Advertisement

Der Diabetologe

, Volume 14, Issue 5, pp 311–318 | Cite as

Diabetes und Gastroenterologie – Update 2017

  • Jörg Bojunga
  • Antonia MondorfEmail author
Leitthema

Zusammenfassung

Im Jahr 2017 wurden zahlreiche neue Erkenntnisse bezüglich der Schnittstelle zwischen Diabetologie und Gastroenterologie veröffentlicht. Durch die Ergebnisse diverser Studien über die Pathogenese einer nichtalkoholischen Fettleber (NAFLD) ist man der Klärung der Frage nach der Ursache bzw. Folge einer sich entwickelnden NAFLD nähergekommen. Vorgehensweisen bei der Diagnostik einer NAFLD und Therapieoptionen durch Lebensstiländerung sowie der Einfluss der medikamentösen Therapie des Diabetes wurden überprüft. Die Autoren großer Kohortenstudien gaben Auskunft über den Zusammenhang zwischen Diabetes und malignen Erkrankungen und über mögliche positive Effekte von Metformin, Statinen und Kaffeekonsum. Auch die möglicherweise zu selten gestellte Diagnose des pankreatopriven Diabetes und der Zusammenhang von Diabetes zu (prä-)malignen Pankreasläsionen werden thematisiert. Es wird eine Auswahl der 2017 veröffentlichten Studien zum Themenkomplex Diabetes und Gastroenterologie zusammengefasst und diskutiert.

Schlüsselwörter

Glukoseintoleranz Nichtalkoholische Steatohepatitis Hepatozelluläres Karzinom Hydroxymethylglutaryl-CoA-Reduktase-Hemmer Pankreaserkrankungen 

Abkürzungen

95 %-KI

95 %-Konfidenzintervall

AFP

Alphafetoprotein

BMI

Body-Mass-Index

CA 19-9

Karbohydratantigen 19-9

CRC

Kolorektales Karzinom

DPP-4

Dipeptidylpeptidase 4

GERD

Gastroösophageale Refluxkrankheit

GLP-1

„Glucagon-like peptide 1“

GSG

Glutamat-Serin-Glyzin

HbA1c

Glykohämoglobin Typ A1c

HCC

Hepatozelluläres Karzinom

HR

„Hazard ratio“

MR-

Magnetresonanz-

MRT

Magnetresonanztomographie

NAFLD

Nichtalkoholische Fettlebererkrankung

NASH

Nichtalkoholische Steatohepatitis

NFS

NAFLD-Fibrose-Score

RBP4

Retinolbindendes Protein 4

SGLT-2

„Sodium dependent glucose transporter 2“

T2DM

Diabetes mellitus Typ 2

Diabetes and gastroenterology—2017 update

Abstract

In 2017 numerous studies were published concerning the interface and mutual relationship between diabetology and gastroenterology. Several studies on the pathogenesis of non-alcoholic fatty liver disease (NAFLD) have come closer to clarifying the question of the cause and consequences of developing NAFLD. Diagnostic procedures and therapeutic options of NAFLD by lifestyle modification or drug therapy of diabetes were reviewed. Authors of large cohort studies dealing with the association of diabetes and malignancies reported possible positive effects of drug therapies such as metformin, statins, and consumption of coffee. A major topic evaluated was the possibly underdiagnosed form of diabetes due to diseases of the exocrine pancreas as well as the coincidence of diabetes and (pre-)malignant pancreatic lesions. A selection of articles published in 2017 on the topic of diabetes and gastroenterology are summarized and discussed.

Keywords

Glucose intolerance Non-alcoholic fatty liver disease Carcinoma, hepatocellular Hydroxymethylglutaryl-CoA reductase inhibitors Pancreatic diseases 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Bojunga und A. Mondorf geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Liu M, Wang J, Zeng J, Cao X, He Y (2017) Association of NAFLD with diabetes and the impact of BMI changes: a 5‑year cohort study based on 18,507 elderly. J Clin Endocrinol Metab 102:1309–1316CrossRefPubMedGoogle Scholar
  2. 2.
    Meex RCR, Watt MJ (2017) Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance,”. Nat Rev Endocrinol 13:509–520CrossRefPubMedGoogle Scholar
  3. 3.
    Marra F, Svegliati-Baroni G (2018) Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol 68:280–295CrossRefPubMedGoogle Scholar
  4. 4.
    Lambertz J, Weiskirchen S, Landert S, Weiskirchen R (2017) Fructose: a dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Front Immunol 8:1159CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Thuluvath PJ, Kantsevoy S, Thuluvath AJ, Savva Y (2017) Is cryptogenic cirrhosis different from NASH cirrhosis? J Hepatol 68:519–525CrossRefPubMedGoogle Scholar
  6. 6.
    Xiao G, Zhu S, Xiao X, Yan L, Yang J, Wu G (2017) Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis. Hepatology 66:1486–1501CrossRefPubMedGoogle Scholar
  7. 7.
    Roeb E, Steffen H, Bantel H, Baumann U, Canbay A, Demir M et al (2015) S2k-Leitlinie nicht alkoholische Fettlebererkrankungen. Z Gastroenterol 53(7):668–723PubMedGoogle Scholar
  8. 8.
    Caussy C et al (2017) Nonalcoholic fatty liver disease with cirrhosis increases familial risk for advanced fibrosis. J Clin Invest 127:2697–2704CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hagström H et al (2017) Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J Hepatol 67:1265–1273CrossRefPubMedGoogle Scholar
  10. 10.
    Yeung M‑W et al (2018) Advanced liver fibrosis but not steatosis is independently associated with albuminuria in Chinese patients with type 2 diabetes. J Hepatol 68:147–156CrossRefGoogle Scholar
  11. 11.
    Gaggini M et al (2018) Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology 67:145–158CrossRefPubMedGoogle Scholar
  12. 12.
    Baratta F et al (2017) Adherence to mediterranean diet and non-alcoholic fatty liver disease: effect on insulin resistance. Am J Gastroenterol 112:1832–1839CrossRefPubMedGoogle Scholar
  13. 13.
    Bach-Faig A et al (2011) Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr 14:2274–2284CrossRefPubMedGoogle Scholar
  14. 14.
    Bojunga J, Sircar I (2017) Formuladiäten zum Abnehmen bei Typ-2-Diabetes – sinnvolle Strategie oder verzichtbar? Diabetologe 13:398–402CrossRefGoogle Scholar
  15. 15.
    Schmid V et al (2017) Non-alcoholic fatty liver disease and impaired proinsulin conversion as newly identified predictors of the long-term non-response to a lifestyle intervention for diabetes prevention: results from the TULIP study. Diabetologia 60:2341–2351CrossRefPubMedGoogle Scholar
  16. 16.
    Kasmari AJ, Welch A, Liu G, Leslie D, McGarrity T, Riley T (2017) Independent of cirrhosis, hepatocellular carcinoma risk is increased with diabetes and metabolic syndrome. Am J Med 130:746.e1–746.e7CrossRefGoogle Scholar
  17. 17.
    Tilg H, Moschen AR, Roden M (2017) NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol 14:32–42CrossRefPubMedGoogle Scholar
  18. 18.
    Deng X‑L, Ma R, Zhu H‑X, Zhu J (2017) Short article: a randomized-controlled study of sitagliptin for treating diabetes mellitus complicated by nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 29:297–301CrossRefPubMedGoogle Scholar
  19. 19.
    Dong Y et al (2017) Efficacy and safety of glucagon-like peptide-1 receptor agonists in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Clin Res Hepatol Gastroenterol 41:284–295CrossRefPubMedGoogle Scholar
  20. 20.
    Simon TG et al (2017) Diabetes, metabolic comorbidities and risk of hepatocellular carcinoma: results from two prospective cohort studies. Hepatology 67:1797–1806CrossRefGoogle Scholar
  21. 21.
    Kim G, Jang S‑Y, Nam CM, Kang ES (2017) Statin use and the risk of hepatocellular carcinoma in patients at high risk: a nationwide nested case-control study. J Hepatol 68:476–484CrossRefPubMedGoogle Scholar
  22. 22.
    Nishio T et al (2017) Impact of statin use on the prognosis of patients with hepatocellular carcinoma undergoing liver resection: a subgroup analysis of patients without chronic hepatitis viral infection. Surgery 63:264–269Google Scholar
  23. 23.
    Del Ben M et al (2017) Under-prescription of statins in patients with non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 27:161–167CrossRefPubMedGoogle Scholar
  24. 24.
    Kennedy OJ, Roderick P, Buchanan R et al (2017) Coffee, including caffeinated and decaffeinated coffee, and the risk of hepatocellular carcinoma: a systematic review and dose-response meta-analysis. BMJ Open 7(5):e13739CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tu J et al (2017) Endocrine and exocrine pancreatic insufficiency after acute pancreatitis: Long-term follow-up study. BMC Gastroenterol 17:1–9CrossRefGoogle Scholar
  26. 26.
    Woodmansey C et al (2017) Incidence, demographics, and clinical characteristics of diabetes of the exocrine pancreas (type 3c): a retrospective cohort study. Diabetes Care.  https://doi.org/10.2337/dc17-0542 PubMedCrossRefGoogle Scholar
  27. 27.
    Hart PA et al (2016) Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer. Lancet Gastroenterol Hepatol 1:226–237CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mizuno S et al (2017) Prevalence of pancreatic cystic lesions is associated with diabetes mellitus and obesity. Pancreas 46:801–805CrossRefPubMedGoogle Scholar
  29. 29.
    Pang Y et al (2017) Diabetes, plasma glucose and incidence of pancreatic cancer: a prospective study of 0.5 million Chinese adults and a meta-analysis of 22 cohort studies. Int J Cancer 140:1781–1788CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Keum N, Ha KH, Bao Y, Chung MJ, Kim HC, Giovannucci EL (2018) Long-term patterns of fasting blood glucose levels and pancreatic cancer incidence. Cancer Causes Control 29:135–142CrossRefPubMedGoogle Scholar
  31. 31.
    Nauck MA, Meier JJ, Schmidt WE (2017) Incretin-based glucose-lowering medications and the risk of acute pancreatitis and/or pancreatic cancer: reassuring data from cardio-vascular outcome trials. Diabetes Obes Metab 19:1327–1328CrossRefPubMedGoogle Scholar
  32. 32.
    Dong Y, Shi Y, He L, Cui X, Su P (2017) Effects of metformin on survival outcomes of pancreatic cancer: a meta-analysis. Oncotarget 8:55478–55488PubMedPubMedCentralGoogle Scholar
  33. 33.
    de Kort S et al (2017) Higher risk of colorectal cancer in patients with newly diagnosed diabetes mellitus before the age of colorectal cancer screening initiation. Sci Rep 7:46527CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kim YH et al (2017) Inadequate bowel cleansing efficacy of split-dose polyethylene glycol for colonoscopy in type 2 diabetic patients: a prospective and blinded study. J Clin Gastroenterol 51:240–246PubMedGoogle Scholar
  35. 35.
    Alvarez-Gonzalez MA et al (2016) Efficacy of a multifactorial strategy for bowel preparation in diabetic patients undergoing colonoscopy: a randomized trial. Endoscopy 48:1003–1009CrossRefPubMedGoogle Scholar
  36. 36.
    Panarese A (2017) Bowel preparation in diabetic patients undergoing colonoscopy. Endoscopy 49:202CrossRefPubMedGoogle Scholar
  37. 37.
    Jung YS, Park CH, Eun CS, Il Park D, Han DS (2017) Metformin use and the risk of colorectal adenoma: a systematic review and meta-analysis. J Gastroenterol Hepatol 32:957–965CrossRefPubMedGoogle Scholar
  38. 38.
    Abrahami D, Yin H, Yu OHY, Pollak MN, Azoulay L (2017) Incretin-based drugs and the incidence of colorectal cancer in patients with type 2 diabetes. Epidemiology 29:1CrossRefGoogle Scholar
  39. 39.
    Takeshita E et al (2017) Eating behaviours and prevalence of gastroesophageal reflux disease in Japanese patients with type 2 diabetes mellitus: the Dogo study. Can J Diabetes.  https://doi.org/10.1016/j.jcjd.2017.07.007 PubMedCrossRefGoogle Scholar
  40. 40.
    He Q, Li J, Huang W, Zhu W, Yang J (2016) Metabolic syndrome is associated with increased risk of Barrett esophagus. Medicine (Baltimore) 95:e4338CrossRefGoogle Scholar
  41. 41.
    Jiang X, Bernstein L, Tseng C‑C, Wu AH (2012) Diabetes and risk of esophageal and gastric adenocarcinomas. Int J Cancer 131:1417–1422CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Xu B, Zhou X, Li X, Liu C, Yang C (2017) Diabetes mellitus carries a risk of esophageal cancer: a meta-analysis. Medicine (Baltimore) 96:e7944CrossRefGoogle Scholar
  43. 43.
    Gangopadhyay K, Singh P (2017) Consensus statement on dose modifications of antidiabetic agents in patients with hepatic impairment. Indian J Endocrinol Metab 21:341CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Haukka J, Niskanen L, Auvinen A (2017) Risk of cause-specific death in individuals with cancer-modifying role diabetes, statins and metformin. Int J Cancer 141:2437–2449CrossRefPubMedGoogle Scholar
  45. 45.
    de Jong RGPJ et al (2017) Impact of detection bias on the risk of gastrointestinal cancer and its subsites in type 2 diabetes mellitus. Eur J Cancer 79:61–71CrossRefPubMedGoogle Scholar
  46. 46.
    Zhao M, Liao D, Zhao J (2017) Diabetes-induced mechanophysiological changes in the small intestine and colon. World J Diabetes 8:249–269CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kempler P, Várkonyi T, Körei AE, Horváth VJ (2016) Gastrointestinal autonomic neuropathy in diabetes: the unattended borderline between diabetology and gastroenterology. Diabetologia 59:401–403CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Medizinische Klinik 1Johann Wolfgang Goethe-UniversitätFrankfurt am MainDeutschland

Personalised recommendations