Advertisement

Der Diabetologe

, Volume 12, Issue 6, pp 394–400 | Cite as

Regulation des Mikrobioms über Ernährungseinflüsse

  • M. BlautEmail author
Leitthema

Zusammenfassung

Hintergrund

Die Art der Ernährung bestimmt die Zusammensetzung der intestinalen Mikrobiota sowie das Spektrum und die Menge der im Kolon gebildeten kurzkettigen Fettsäuren.

Kurzkettige Fettsäuren

Neben ihrer Rolle als Energielieferanten fungieren sie als Bausteine und üben regulatorische Funktionen im Wirtsorganismus aus. So dienen Azetat für die Lipogenese und Propionat für die Glukoneogenese als Baustein. Kurzkettige Fettsäuren fungieren aber auch als Liganden von Rezeptoren, die an der Regulation des Energiestoffwechsels des Wirtsorganismus beteiligt sind.

Mikrobiom und Adipositas

Adipositas lässt sich durch Transplantation der intestinalen Mikrobiota adipöser Menschen oder übergewichtiger Mäuse auf keimfreie Mäuse übertragen. Es gibt erste Hinweise auf intestinale Bakterien, welche Adipositas und metabolische Erkrankungen fördern, während andere Darmbakterien sie eher verhindern. Die dem zugrunde liegenden Mechanismen sind weitgehend unverstanden.

Schlüsselwörter

Mikrobiota Fettsäuren, kurzkettige Energiestoffwechsel  Metabolische Erkrankungen Adipositas 

Regulation of the microbiome by diet

Abstract

Background

Nutrition affects the composition of the intestinal microbiota and the spectrum and the amount of short-chain fatty acids produced in the colon.

Short-chain fatty acids

Besides their role as an energy source, short-chain fatty acids have regulatory functions in the host. Thus, acetate serves as a building block in lipogenesis and propionate in gluconeogenesis. However, short-chain fatty acids they are also ligands of receptors that may play a role in the regulation of host energy metabolism.

The microbiome and obesity

Obesity can be transferred to germfree mice by transplanting the intestinal microbiota from obese humans or rodents. There are some hints that certain members of the intestinal microbiota promote obesity and metabolic disease while others do the opposite. The underlying mechanisms are largely unknown.

Keywords

Mikrobiome Fatty acids, short-chain Energy metabolism Metabolic diseases Obesity 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Blaut gibt an, dass kein Interessenkonflikt besteht.

Alle in dieser Arbeit zitierten Arbeiten des Autors wurden unter Einhaltung ethischer Normen durchgeführt.

Literatur

  1. 1.
    Backhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Batterham RL, Cowley MA, Small CJ et al (2002) Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418:650–654CrossRefPubMedGoogle Scholar
  3. 3.
    Blaut M, Klaus S (2012) Intestinal microbiota and obesity. Handb Exp Pharmacol. doi: 10.1007/978-3-642-24716-3_11 PubMedGoogle Scholar
  4. 4.
    Brown AJ, Goldsworthy SM, Barnes AA et al (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319CrossRefPubMedGoogle Scholar
  5. 5.
    Cani PD, Knauf C, Iglesias MA et al (2006) Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 55:1484–1490CrossRefPubMedGoogle Scholar
  6. 6.
    Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772CrossRefPubMedGoogle Scholar
  7. 7.
    Cani PD, Delzenne NM (2009) The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 15:1546–1558CrossRefPubMedGoogle Scholar
  8. 8.
    Cani PD, Neyrinck AM, Fava F et al (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383CrossRefPubMedGoogle Scholar
  9. 9.
    Chambers ES, Viardot A, Psichas A et al (2014) Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. doi: 10.1136/gutjnl-2014-307913 PubMedPubMedCentralGoogle Scholar
  10. 10.
    Collado MC, Isolauri E, Laitinen K et al (2008) Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 88:894–899PubMedGoogle Scholar
  11. 11.
    Croset M, Rajas F, Zitoun C et al (2001) Rat small intestine is an insulin-sensitive gluconeogenic organ. Diabetes 50:740–746CrossRefPubMedGoogle Scholar
  12. 12.
    Dao MC, Everard A, Aron-Wisnewsky J et al (2015) Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. doi: 10.1136/gutjnl-2014-308778 Google Scholar
  13. 13.
    De Vadder F, Kovatcheva-Datchary P, Goncalves D et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96CrossRefPubMedGoogle Scholar
  14. 14.
    Delaere F, Duchampt A, Mounien L et al (2012) The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol Metab 2:47–53CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Erridge C, Attina T, Spickett CM et al (2007) A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86:1286–1292PubMedGoogle Scholar
  16. 16.
    Fei N, Zhao L (2013) An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J 7:880–884CrossRefPubMedGoogle Scholar
  17. 17.
    Fleissner CK, Huebel N, Abd El-Bary MM et al (2010) Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr 104:919–929CrossRefPubMedGoogle Scholar
  18. 18.
    Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770CrossRefPubMedGoogle Scholar
  19. 19.
    Frost G, Sleeth ML, Sahuri-Arisoylu M et al (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gao Z, Yin J, Zhang J et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hotamisligil GS, Erbay E (2008) Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol 8:923–934CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kalliomaki M, Collado MC, Salminen S et al (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87:534–538PubMedGoogle Scholar
  23. 23.
    Karlsson FH, Tremaroli V, Nookaew I et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103CrossRefPubMedGoogle Scholar
  24. 24.
    Kless C, Muller VM, Schuppel VL et al (2015) Diet-induced obesity causes metabolic impairment independent of alterations in gut barrier integrity. Mol Nutr Food Res 59:968–978CrossRefPubMedGoogle Scholar
  25. 25.
    Lazarova DL, Chiaro C, Wong T et al (2013) CBP activity mediates effects of the Histone Deacetylase inhibitor Butyrate on WNT activity and Apoptosis in colon cancer cells. J Cancer 4:481–490CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546CrossRefPubMedGoogle Scholar
  27. 27.
    Ley RE, Turnbaugh PJ, Klein S et al (2006) Human gut microbes associated with obesity. Nature 444:1022–1023CrossRefPubMedGoogle Scholar
  28. 28.
    Lin HC, Neevel C, Chen JH (2004) Slowing intestinal transit by PYY depends on serotonergic and opioid pathways. Am J Physiol Gastrointest Liver Physiol 286:G558–G563CrossRefPubMedGoogle Scholar
  29. 29.
    Lin HV, Frassetto A, Kowalik EJ Jr. et al (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3‑independent mechanisms. PLoS ONE 7:e35240CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145CrossRefPubMedGoogle Scholar
  31. 31.
    Psaltopoulou T, Ilias I, Alevizaki M (2010) The role of diet and lifestyle in primary, secondary, and tertiary diabetes prevention: a review of meta-analyses. Rev Diabet Stud 7:26–35CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ridaura VK, Faith JJ, Rey FE et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214CrossRefPubMedGoogle Scholar
  33. 33.
    Samuel BS, Shaito A, Motoike T et al (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 105:16767–16772CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Schwiertz A, Taras D, Schafer K et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18:190–195CrossRefGoogle Scholar
  35. 35.
    Shin NR, Lee JC, Lee HY et al (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63:727–735CrossRefPubMedGoogle Scholar
  36. 36.
    Sonnenburg ED, Smits SA, Tikhonov M et al (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:212–215CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820CrossRefPubMedGoogle Scholar
  38. 38.
    Tazoe H, Otomo Y, Kaji I et al (2008) Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 59(Suppl 2):251–262PubMedGoogle Scholar
  39. 39.
    Teixeira TF, Grzeskowiak L, Franceschini SC et al (2013) Higher level of faecal SCFA in women correlates with metabolic syndrome risk factors. Br J Nutr 109:914–919CrossRefPubMedGoogle Scholar
  40. 40.
    Tolhurst G, Heffron H, Lam YS et al (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G‑protein-coupled receptor FFAR2. Diabetes 61:364–371CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031CrossRefPubMedGoogle Scholar
  42. 42.
    Turnbaugh PJ, Backhed F, Fulton L et al (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Turnbaugh PJ, Ridaura VK, Faith JJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Turton MD, O’shea D, Gunn I et al (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379:69–72CrossRefPubMedGoogle Scholar
  45. 45.
    Woting A, Pfeiffer N, Loh G et al (2014) Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models. MBio 5:e01530–e01514CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Woting A, Pfeiffer N, Hanske L et al (2015) Alleviation of high fat diet-induced obesity by oligofructose in gnotobiotic mice is independent of presence of Bifidobacterium longum. Mol Nutr Food Res. doi: 10.1002/mnfr.201500249 PubMedGoogle Scholar
  47. 47.
    Wu X, Ma C, Han L et al (2010) Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol 61:69–78CrossRefPubMedGoogle Scholar
  48. 48.
    Xiong Y, Miyamoto N, Shibata K et al (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci USA 101:1045–1050CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Abteilung Gastrointestinale Mikrobiologie (GAMI)Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE)NuthetalDeutschland

Personalised recommendations