Advertisement

Der Diabetologe

, Volume 12, Issue 6, pp 386–393 | Cite as

Intestinales Mikrobiom

Grundlagen und Ernährungseinflüsse
  • M. BlautEmail author
Leitthema
  • 473 Downloads

Zusammenfassung

Hintergrund

Der Verdauungstrakt des Menschen ist von einer komplexen Lebensgemeinschaft aus überwiegend anaeroben Mikroorganismen besiedelt, welche als intestinale Mikrobiota bzw. in Kombination mit ihrem Gesamtgenom als Mikrobiom bezeichnet wird. Erst die Entwicklung von Methoden zur Anzucht strikt anaerober Bakterien und die kultivierungsunabhängige Erfassung von Darmbakterien und ihrer Genome offenbarten die große Bedeutung des Mikrobioms für den Wirtsorganismus.

Darmbesiedelung und Funktionen des Mikrobioms

Die mikrobielle Besiedelung des Verdauungstraktes erfolgt auf oralem Weg während und nach der Geburt. Darmbakterien gewinnen ihre Energie durch Fermentation nichtverdaulicher Nahrungskomponenten und körpereigener Substanzen. Das Mikrobiom stattet den Wirt mit einem breiten Spektrum von Enzymen aus, die dem Abbau nichtverdaulicher Nahrungsinhaltsstoffe dienen. Die Ernährung beeinflusst die Zusammensetzung und Aktivität des intestinalen Mikrobioms maßgeblich. Im Zuge der bakteriellen Fermentation im Kolon entstehen kurzkettige Fettsäuren, die für den Wirt einerseits als Energielieferanten dienen, andererseits aber vielfältige regulatorische Funktionen ausüben.

Schlüsselwörter

Gastrointestinaltrakt Mikrobiota Ernährung Fermentation Metabolische Phänomene 

The intestinal microbiome

Fundamentals and influence of diet

Abstract

Background

The human digestive tract is populated with a complex community of mostly anaerobic microorganisms referred to as the intestinal microbiome. The importance of the intestinal microbiome for the host only became apparent after methods for the growth of strict anaerobes and the culture-independent retrieval of metagenomic information had been established.

Colonization of the intestinal tract and functions of the microbiome

Microbial colonization of the intestinal tract occurs via the oral route during and after birth. Intestinal bacteria gain energy by fermenting undigested food components and endogenous substances. The microbiome endows the host with a wide spectrum of enzymes that enable the degradation of nondigestible food components. Nutrition is a major factor influencing the composition and activity of the intestinal microbiome. Bacterial fermentation in the colon gives rise to short-chain fatty acids which—in addition to delivering energy to the host—possess regulatory functions.

Keywords

Gastrointestinal tract Microbiota Diet Fermentation Metabolic phenomena 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Blaut gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Aagaard K, Ma J, Antony KM et al (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237ra265Google Scholar
  2. 2.
    Baughn AD, Malamy MH (2004) The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427:441–444CrossRefPubMedGoogle Scholar
  3. 3.
    Bingham SA, Day NE, Luben R et al (2003) Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet 361:1496–1501CrossRefPubMedGoogle Scholar
  4. 4.
    Blaut M (2015) Gut microbiota and energy balance: role in obesity. Proc Nutr Soc 74:227–234CrossRefPubMedGoogle Scholar
  5. 5.
    Blaut M (2016) Regulation des Mikrobioms durch Ernährungseinflüsse. Diabetologe. doi:10.1007/s11428-016-0130-5Google Scholar
  6. 6.
    Brighenti F, Casiraghi MC, Baggio C (1998) Resistant starch in the Italian diet. Br J Nutr 80:333–341PubMedGoogle Scholar
  7. 7.
    Carmody RN, Gerber GK, Luevano JM Jr. et al (2015) Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17:72–84CrossRefPubMedGoogle Scholar
  8. 8.
    D’elia JN, Salyers AA (1996) Effect of regulatory protein levels on utilization of starch by Bacteroides thetaiotaomicron. J Bacteriol 178:7180–7186PubMedPubMedCentralGoogle Scholar
  9. 9.
    David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563CrossRefPubMedGoogle Scholar
  10. 10.
    De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Den Besten G, Van Eunen K, Groen AK et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Flint HJ, Scott KP, Duncan SH et al (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Funkhouser LJ, Bordenstein SR (2013) Mom knows best: the universality of maternal microbial transmission. PLoS Biol 11:e1001631CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Goncalves P, Araujo JR, Martel F (2011) Characterization of butyrate uptake by nontransformed intestinal epithelial cell lines. J Membr Biol 240:35–46CrossRefPubMedGoogle Scholar
  15. 15.
    Isken F, Klaus S, Osterhoff M et al (2010) Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6 J mice. J Nutr Biochem 21:278–284CrossRefPubMedGoogle Scholar
  16. 16.
    Islam KB, Fukiya S, Hagio M et al (2011) Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141:1773–1781CrossRefPubMedGoogle Scholar
  17. 17.
    Jimenez E, Fernandez L, Marin ML et al (2005) Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 51:270–274CrossRefPubMedGoogle Scholar
  18. 18.
    Jimenez E, Marin ML, Martin R et al (2008) Is meconium from healthy newborns actually sterile? Res Microbiol 159:187–193CrossRefPubMedGoogle Scholar
  19. 19.
    La Rosa PS, Warner BB, Zhou Y et al (2014) Patterned progression of bacterial populations in the premature infant gut. Proc Natl Acad Sci U S A 111:12522–12527CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ley RE, Backhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ley RE, Turnbaugh PJ, Klein S et al (2006) Human gut microbes associated with obesity. Nature 444:1022–1023CrossRefPubMedGoogle Scholar
  22. 22.
    McNeil NI (1984) The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 39:338–342PubMedGoogle Scholar
  23. 23.
    Murphy MM, Douglass JS, Birkett A (2008) Resistant starch intakes in the United States. J Am Diet Assoc 108:67–78CrossRefPubMedGoogle Scholar
  24. 24.
    O’keefe SJ, Li JV, Lahti L et al (2015) Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 6:6342CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Roberfroid MB (2005) Inulin-type fructans: functional food ingredients. CRC Press, Boca RatonGoogle Scholar
  26. 26.
    Roediger WE (1980) Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21:793–798CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shipman JA, Berleman JE, Salyers AA (2000) Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron. J Bacteriol 182:5365–5372CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sommer F, Adam N, Johansson ME et al (2014) Altered mucus glycosylation in core 1 O‑glycan-deficient mice affects microbiota composition and intestinal architecture. PLoS ONE 9:e85254CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sonnenburg JL, Xu J, Leip DD et al (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307:1955–1959CrossRefPubMedGoogle Scholar
  30. 30.
    Sonnenburg ED, Smits SA, Tikhonov M et al (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:212–215CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Topping DL, Fukushima M, Bird AR (2003) Resistant starch as a prebiotic and synbiotic: state of the art. Proc Nutr Soc 62:171–176CrossRefPubMedGoogle Scholar
  32. 32.
    Turnbaugh PJ, Backhed F, Fulton L et al (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tyagi S, Venugopalakrishnan J, Ramaswamy K et al (2002) Mechanism of n‑butyrate uptake in the human proximal colonic basolateral membranes. Am J Physiol Gastrointest Liver Physiol 282:G676–G682CrossRefPubMedGoogle Scholar
  34. 34.
    Vidyasagar S, Barmeyer C, Geibel J et al (2005) Role of short-chain fatty acids in colonic HCO(3) secretion. Am J Physiol Gastrointest Liver Physiol 288:G1217–G1226CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Abteilung Gastrointestinale Mikrobiologie (GAMI)Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE)NuthetalDeutschland

Personalised recommendations