Der Diabetologe

, Volume 10, Issue 1, pp 48–55

Auf dem Weg zum „Closed-loop“-System

Bestandteile und Schritte
Leitthema
  • 150 Downloads

Zusammenfassung

Diabetestherapie bedeutet für einen Menschen mit Typ-1-Diabetes die Notwendigkeit, ein lebenslanges Management der Insulinsubstitution zu gewährleisten, beruhend auf profunden Kenntnissen zur Erkrankung, der Blutglucoseselbstmessung und der Insulindosisanpassung. Es ist deshalb ein sehnlicher Wunsch der Patienten, das Insulinmanagement zu automatisieren, was der technischen Lösung im Sinne eines artifiziellen Pankreas entspricht. Konkret gilt es, einen Kreislauf von Glucosemessung und Insulinabgabe so zu etablieren, dass sich ein geschlossenes System ergibt („Closed-loop“-System, CLS). Eine Nachahmung der physiologischen Situation ist nur eingegrenzt möglich, d. h., bei praktisch realisierbaren CLS erfolgt die Steuerung der s.c.-Insulin-Infusion über einen subkutan messenden Glucosesensor. Dies stellt eine Abweichung von der physiologischen Situation dar. Solche Abweichungen und die sich daraus ergebenden Schwierigkeiten gilt es durch geeignete Steuerungsalgorithmen zu kompensieren. Einige Voraussetzungen für CLS werden bereits heute im Alltag eingesetzt, so die Kalkulation von Insulindosen in den Pumpen sowie die Kopplung von Glucosesensor und Pumpe. Dadurch ist eine automatisierte Hypoglykämieabschaltung möglich; eine erste Stufe von CLS findet also bereits Verwendung in der täglichen Insulintherapie. Die Entwicklung bis zu vollautomatischen CLS, die als Produkte kommerziell verfügbar werden, wird über mehrere Entwicklungsstufen verlaufen. Aktuell wird eine Reihe von klinischen Studien durchgeführt, bei denen CLS die Kontrolle der Insulintherapie unter Alltagsbedingungen übernehmen; die bisherigen Ergebnisse dieser Studien sind ausgesprochen positiv.

Schlüsselwörter

Diabetes mellitus, Typ 1 Blutglucoseselbstmessung Insulininfusionssysteme Algorithmen Hypoglykämie 

On course for a closed-loop system

Components and steps

Abstract

For a person with type 1 diabetes, the diabetes therapy means the necessity to ensure a lifelong management of insulin substitution entailing a profound knowledge of the disease, blood glucose self-monitoring and adjustment of insulin dosage. It is therefore a fervent desire of patients for insulin management to be automated and the technical solution corresponds to that of an artificial pancreas. In concrete terms this means establishment of a cycle of glucose measurement and insulin administration in a closed-loop system (CLS). Duplication of the physiological situation has only limited possibilities, i.e. a practically realizable CLS necessitates the control of subcutaneous insulin infusion via a subcutaneous glucose sensor measurement, which records deviations from the physiological situation. These deviations and the resulting difficulties must be compensated by suitable control algorithms. Some prerequisites for a CLS have already been implemented in the daily routine, such as calculation of the insulin dosage in the pumps and coupling of the glucose sensor and pump which allows and automatic shut-off in hypoglycemia. The first stage of a CLS is therefore already used in daily insulin therapy. The development to fully automated CLS and to a commercially available product will run over several developmental stages. A series of clinical studies are currently being carried out in which a CLS undertakes the control of insulin therapy under routine daily conditions and the results of these studies are so far extremely promising.

Keywords

Diabetes mellitus, type 1 Blood glucose self-monitoring Insulin infusion systems Algorithms Hypoglycemia 

Literatur

  1. 1.
    Vaughn DE, Yocum RC, Muchmore DB et al (2009) Accelerated pharmacokinetics and glucodynamics of prandial insulins injected with recombinant human hyaluronidase. Diabetes Technol Ther 11:345–352PubMedCrossRefGoogle Scholar
  2. 2.
    Forst T, Pfützner A, Flacke F et al (2010) Postprandial vascular effects of VIAjec compared with insulin lispro and regular human insulin in patients with type 2 diabetes mellitus. Diabetes Care 33:116–120PubMedCrossRefGoogle Scholar
  3. 3.
    Freckmann G, Pleus S, Westhoff A et al (2012) Clinical performance of a device that applies local heat to the insulin infusion site: a crossover study. J Diabetes Sci Technol 6:320–327PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Kulcu E, Tamada JA, Reach G et al (2003) Physiological differences between interstitial glucose and blood glucose measured in human subjects. Diabetes Care 26:2405–2409PubMedCrossRefGoogle Scholar
  5. 5.
    Kovatschev BP, Shields D, Breton M (2009) Graphical and numerical evaluation of continuous glucose sensing time lag. Diabetes Technol Ther 11:139–143CrossRefGoogle Scholar
  6. 6.
    Selam JL, Raccah D, Jean-Didier N et al (1992) Randomised comparison of metabolic control achieved by intraperitoneal insulin infusion with implantable pumps versus intensive subcutaneous insulin therapy in type I diabetic patients. Diabetes Care 15:53–58PubMedCrossRefGoogle Scholar
  7. 7.
    Jeandidier N, Selam JL, Renard E et al (1996) Decreased severe hypoglycaemia frequency during intraperitoneal insulin infusion using programmable implantable pumps. Evadiac Study Group. Diabetes Care 19:780–785PubMedGoogle Scholar
  8. 8.
    Lotgenberg SJ, Kleestra N, Houweling ST et al (2009) Improved glycemic control with intraperitoneal versus subcutaneous insulin in type 1 diabetes. Diabetes Care 32:1372–1377CrossRefGoogle Scholar
  9. 9.
    Liebl A, Hoogma R, Renard E et al (2009) A reduction in severe hypoglycaemia in type 1 diabetes in a randomized crossover study of continuous intraperitoneal compared with subcutaneous insulin infusion. Diabetes Obes Metab 11:1001–1008PubMedCrossRefGoogle Scholar
  10. 10.
    Renard E, Costalat G, Moran B et al (2001) First combined implantations of a long-term IV glucose sensor and an intra-peritoneal insulin pump in diabetic patients. Diabetes 50(Suppl 2):A3Google Scholar
  11. 11.
    Fogt EJ, Dodd LM, Eddy AR et al (1979) Development of artificial endocrine pancreas (closed loop system) and sensors for continuous glucose monitoring. In: Alberti KG, Hepp KD, Pfeiffer EF, Kerner W (Hrsg) Feedback-controlled and preprogrammed insulin infusion in diabetes mellitus. Thieme, StuttgartGoogle Scholar
  12. 12.
    Koivisto VA, Yki-Jarvinen H, Helve E (1986) Pathogenesis and prevention of the dawn phenomenon in diabetic patients treated with CSII. Diabetes 35:78–82PubMedCrossRefGoogle Scholar
  13. 13.
    Pickup JC (2012) Insulin-pump therapy for type 1 diabetes mellitus. N Engl J Med 366:1616–1624PubMedCrossRefGoogle Scholar
  14. 14.
    Lauritzen T, Pramming S, Deckert T, Binder C (1983) Pharmacokinetics of continuous subcutaneous insulin infusion. Diabetologia 24:326–329PubMedCrossRefGoogle Scholar
  15. 15.
    Heinemann L (2002) Variability of insulin absorption and action. Diabetes Technol Ther 4:673–682PubMedCrossRefGoogle Scholar
  16. 16.
    Heise T, Nosek L, Rønn BB et al (2004) Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes 53:1614–1620PubMedCrossRefGoogle Scholar
  17. 17.
    Pickup J, Sutten AJ (2008) Severe hypoglycaemia and glycaemic control in type 1 diabetes: meta-analysis of multiple daily insulin injections compared with continuous subcutaneous insulin infusion. Diabet Med 25:765–774PubMedCrossRefGoogle Scholar
  18. 18.
    Jeitler K, Horvath K, Berghold A et al (2008) Continuous subcutaneous insulin infusion versus multiple daily insulin injections in patients with diabetes mellitus: systematic review and meta-analysis. Diabetologia 51:941–951PubMedCrossRefGoogle Scholar
  19. 19.
    Henrichs HR, Liebl A, Reichel A et al, für die Arbeitsgemeinschaft Diabetologische Technologie der DDG (AGDT) (2009) Experimentelle Untersuchungen und klinische Evidenz der Insulinpumpentherapie (CSII). Diabetologie 4:390–397CrossRefGoogle Scholar
  20. 20.
    Chase HP, Saib SZ, MacKenzie T et al (2002) Post-prandial glucose excursions following four methods of bolus insulin administration in subjects with type 1 diabetes. Diabet Med 19:317–321PubMedCrossRefGoogle Scholar
  21. 21.
    Zisser H, Robinson L, Bevier W et al (2008) Bolus calculator: a review of four „smart“ insulin pumps. Diabetes Technol Ther 10:441–444PubMedCrossRefGoogle Scholar
  22. 22.
    Kovatchev B, Heinemann L, Anderson S, Clarke W (2008) Comparison of the numerical and clinical accuracy of four continuous glucose monitors. Diabetes Care 31:1160–1164PubMedCrossRefGoogle Scholar
  23. 23.
    Koschinsky T, Heckermann S, Heinemann L (2007) Continuous glucose monitoring allows for larger measurement errors than for SMBG: a new application of the diabetes error test model. Diabetes 56(Suppl 1):A109Google Scholar
  24. 24.
    Deiss D, Bolinder J, Riveline J-P et al (2006) Improved glycemic control in poorly controlled patients with type 1 diabetes using real-time continuous glucose monitoring. Diabetes Care 29:2730–2732PubMedCrossRefGoogle Scholar
  25. 25.
    Hirsch IB, Abelseth J, Bode BW et al (2008) Sensor-augmented insulin pump therapy: results of the first randomized treat-to-target study. Diabetes Technol Ther 10:377–383PubMedCrossRefGoogle Scholar
  26. 26.
    JDRF, Continuous Glucose Monitoring Study Group (2008) Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med 359:1464–1476CrossRefGoogle Scholar
  27. 27.
    Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group (2009) The effect of continuous glucose monitoring in well-controlled type 1 diabetes. Diabetes Care 32:1378–1383CrossRefGoogle Scholar
  28. 28.
    O’Connell MA, Donath S, O’Neal DN et al (2009) Glycaemic impact of patient-led use of sensor-guided pump therapy in type 1 diabetes: a randomised controlled trial. Diabetologia 52:1250–1257CrossRefGoogle Scholar
  29. 29.
    Raccah D, Sulmont V, Reznik Y et al (2009) Incremental value of continuous glucose monitoring when starting pump therapy in patients with poorly controlled type 1 diabetes. Diabetes Care 32:2245–2250PubMedCrossRefGoogle Scholar
  30. 30.
    Hermanides J, Nørgaard K, Bruttomesso D et al (2011) Sensor augmented pump therapy lowers HbA1c in suboptimally controlled type 1 diabetes: a randomised controlled trial. Diabet Med 28:1158–1167PubMedCrossRefGoogle Scholar
  31. 31.
    Bergenstal RM, Tamborlane WV, Ahmann A et al (2010) Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N Engl J Med 363:311–320PubMedCrossRefGoogle Scholar
  32. 32.
    Battelino T, Phillip M, Bratina N et al (2011) Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes. Diabetes Care 34:795–800PubMedCrossRefGoogle Scholar
  33. 33.
    Battelino T, Conget I, Olsen B et al (2012) The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial. Diabetologia 55:3155–3162PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Pickup JC, Freeman SC, Sutton AJ (2011) Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ 343:d3805. DOI 10.1136/bmj.d3805PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Rys P, Mucha A, Koprowski M et al (2011) Efficacy and safety of continuous glucose monitoring systems vs self-monitoring blood glucose in patients with type 1 diabetes mellitus: a systematic review and meta-analysis. Diabetologia 54(Suppl 1):S116Google Scholar
  36. 36.
    Floyd B, Chandra P, Hall S et al (2012) Comparative analysis of the efficacy of continuous glucose monitoring and self-monitoring of blood glucose in type 1 diabetes mellitus. J Diabetes Sci Technol 6:1094–1102PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Carmen U, Ludwig-Seibold CU, Holder M et al, for the DPV Science Initiative, the German Working Group for insulin pump treatment in pediatric patients and the German BMBF Competence Network Diabetes (2012) Continuous glucose monitoring in children, adolescents, and adults with type 1 diabetes mellitus: analysis from the prospective DPV diabetes documentation and quality management system from Germany and Austria. Pediatric Diabetes 13:12–14CrossRefGoogle Scholar
  38. 38.
    Danne T, Kordonouri O, Remus K et al (2011) Prevention of hypoglycaemia by using low glucose suspend function in sensor-augmented pump therapy. Diabetes Technol Ther 13:1129–1134PubMedCrossRefGoogle Scholar
  39. 39.
    Choudhary P, Shin J, Wang Y et al (2011) Insulin pump therapy with automated insulin suspension in response to hypoglycemia: reduction in nocturnal hypoglycemia in those at greatest risk. Diabetes Care 34:2023–2025PubMedCrossRefGoogle Scholar
  40. 40.
    Agrawal P, Welsh JB, Kannard B et al (2011) Usage and effectiveness of the low glucose suspend feature of the Medtronic Paradigm Veo insulin pump. J Diabetes Sci Technol 5:1137–1141PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Garg S, Brazg RL, Bailey TS et al (2012) Reduction in duration of hypoglycemia by automatic suspension of insulin delivery: the in-clinic ASPIRE study. Diabetes Technol Ther 14:205–209PubMedCrossRefGoogle Scholar
  42. 42.
    Ly TT et al (2013) Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs. standard insulin pump therapy in patients with type 1 diabetes. A randomized clinical trial. JAMA 310:1240–1247PubMedCrossRefGoogle Scholar
  43. 43.
    Bergenstal RM, Klonoff DC, Garg SK et al (2013) Threshold-based insulin-pump interruption for reduction of hypoglycemia. N Engl J Med. doi:10.1056/NEJMoa1303576Google Scholar
  44. 44.
    Buckingham B, Cobry E, Clinton P et al (2009) Preventing hypoglycemia using predictive alarm algorithms and insulin pump suspension. Diabetes Technol Ther 11:93–97PubMedCrossRefGoogle Scholar
  45. 45.
    Tsioli C, Remus K, Blaesig S et al (2013) Feasibility data of the predictive low glucose management algorithm – The Pilgrim study. Diabetes 62(Suppl 1):A91Google Scholar
  46. 46.
    Steil GM, Rebrin K, Darwin C et al (2006) Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes 55:3344–3350PubMedCrossRefGoogle Scholar
  47. 47.
    Kovatchev BP, Cox DJ, Kumar A et al (2003) Algorithmic evaluation of metabolic control and risk of severe hypoglycemia in type 1 and type 2 diabetes using self-monitoring blood glucose data. Diabetes Technol Ther 5:817–828PubMedCrossRefGoogle Scholar
  48. 48.
    Hovorka R, Allen JM, Elleri D et al (2010) Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. Lancet 375:743–751PubMedCrossRefGoogle Scholar
  49. 49.
    Atlas E, Nimri R, Miller S et al (2010) MDlogic artificial pancreas system: a pilot study in adults with type 1 diabetes. Diabetes Care 33:1072–1076PubMedCrossRefGoogle Scholar
  50. 50.
    Phillip M, Battelino T, Atlas E et al (2013) Nocturnal glucose control with an artificial pancreas at a diabetes camp. N Engl J Med 368:824–833PubMedCrossRefGoogle Scholar
  51. 51.
    El-Khatib FH, Russell SJ, Nathan DM et al (2010) A bihormonal closed-loop artificial pancreas for type 1 diabetes. Sci Transl Med 2:27–31CrossRefGoogle Scholar
  52. 52.
    O’Grady MJ, Retterath AJ, Keenan DB et al (2012) The use of an automated, portable, glucose control system for overnight glucose control in adolescents and young adults with type 1 diabetes. Diabetes Care 35:2182–2187CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Medtronic GmbHMeerbuschDeutschland
  2. 2.Science & Co. GmbHDüsseldorfDeutschland
  3. 3.Institut für Diabetes-Technologie Forschungs- und Entwicklungsgesellschaft mbHUniversität UlmUlmDeutschland

Personalised recommendations