Der Diabetologe

, Volume 9, Issue 2, pp 117–127

Blutdruckregulation und Nephropathie

Bedeutung bei Kindern und Jugendlichen mit Typ-1-Diabetes
Leitthema
  • 100 Downloads

Zusammenfassung

Die arterielle Hypertonie trägt entscheidend zur Entstehung der diabetischen Folgeerkrankungen bei. Bereits bei ca. 20 % der pädiatrischen Patienten in Deutschland und Österreich finden sich tagsüber erhöhte Blutdruckwerte; die nächtliche Blutdruckregulation ist bei ca. 45 % der Patienten gestört. Daher sollten bei Kindern und Jugendlichen mit Typ-1-Diabetes regelmäßige Blutdruckmessungen durchgeführt werden. Werte > 90. Perzentile, bezogenen auf Geschlecht und Körperhöhe, werden als prähyperton, Werte > 95. Perzentile als hyperton eingestuft. Bei Persistenz der Werte im pathologischen Bereich (möglichst bestätigt durch eine 24-h-Blutdruckmessung) sollte > 90. Perzentile eine „Lifestyle“-Intervention, bei Werten > 95. Perzentile eine zusätzliche medikamentöse Therapie, vorzugsweise mit einem Angiotensinkonversionsenzym(ACE)-Hemmer erfolgen. Der Urin sollte regelmäßig auf Albumin untersucht und bei 2-malig nachgewiesener Mikroalbuminurie in 3 Untersuchungen innerhalb von 3 bis 6 Monaten sollte ebenfalls eine Therapie mit einem ACE-Hemmer begonnen werden. Die medikamentöse Therapie bei Mikroalbuminurie ist v. a. bei gleichzeitiger arterieller Hypertonie indiziert. Diese Maßnahmen sollten stets von der Optimierung der Blutzuckerkontrolle begleitet werden. Bei Kindern und Jugendlichen mit Typ-1-Diabetes ermöglicht die frühe Erkennung der arteriellen Hypertonie und der beginnenden Nephropathie die frühzeitige therapeutische Intervention. Dadurch kann möglicherweise eine Remission erreicht, zumindest aber die Progression von Folgeerkrankungen verzögert werden.

Schlüsselwörter

Arterielle Hypertonie Vaskuläre Erkrankungen Renin-Angiotensin-Aldosteron-System Albuminurie ACE-Hemmer 

Blood pressure regulation and nephropathy

Importance in children and adolescents with type 1 diabetes

Abstract

Arterial hypertension is a key element in the development of diabetic complications. Approximately 20 % of children and adolescents with type 1 diabetes in Germany and Austria suffer from daytime arterial hypertension and nocturnal blood pressure regulation is impaired in approximately 45 % of pediatric patients. Therefore, blood pressure should be regularly measured in children with type 1 diabetes. Blood pressure above the 90th percentile adapted for sex and height, is considered to be prehypertensive and values above the 95th percentile hypertensive. Persistent blood pressure above these cut-off levels, preferably confirmed by 24 h outpatient blood pressure monitoring needs therapeutic interventions: > 90th percentile needs lifestyle interventions and > 95th percentile antihypertensive medication preferably angiotensin converting enzyme (ACE) inhibitors. Regular screening for albuminuria should be performed and ACE inhibitors should be used for patients with persistent microalbuminuria, particularly in cases with simultaneous arterial hypertension. All these interventions need additional blood glucose optimization. Early detection of arterial hypertension and first signs of diabetic nephropathy allow early therapeutic intervention which in turn can lead to remission or at least delayed development of diabetic complications in type 1 diabetic children.

Keywords

Arterial hypertension Vascular diseases Renin-angiotensin-aldosterone system Albuminuria ACE inhibitors 

Literatur

  1. 1.
    Adler AI, Stratton IM, Neil HA (2000) Association of systolic blood pressure with macrovascular and microvascular complications in type 2 diabetes: (UKPDS 36). BMJ 321:412–419PubMedCrossRefGoogle Scholar
  2. 2.
    Berenson GS (2002) Childhood risk factors predict adult risk associated with subclinical cardiovascular disease. The Bogalusa Heart Study. Am J Cardiol 90(10C):3L–7LPubMedCrossRefGoogle Scholar
  3. 3.
    Carey RM, Siragy HM (2003) The intrarenal renin-angiotensin system and diabetic nephropathy. Trends Endocrinol Metab 14:274–281PubMedCrossRefGoogle Scholar
  4. 4.
    Chrysant SG, Chrysant GS (2011) Current status of aggressive blood glucose and blood pressure control in diabetic hypertensive subjects. Am J Cardiol 107:1856–1861PubMedCrossRefGoogle Scholar
  5. 5.
    The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353:2643–2653CrossRefGoogle Scholar
  6. 6.
    Donaghue KC, Chiarelli F, Trotta D et al (2007) Microvascular and macrovascular complications. Pediatr Diabetes 8:163–170PubMedCrossRefGoogle Scholar
  7. 7.
    Dost A, Klinkert C, Kapellen T et al (2008) Arterial hypertension determined by ambulatory blood pressure profiles: contribution to microalbuminuria risk in a nationwide multicenter investigation in 2,105 children and adolescents with diabetes mellitus type 1. Diabetes Care 31:720–725PubMedCrossRefGoogle Scholar
  8. 8.
    Dost A, Molz E, Krebs A et al (2012) Pulse Pressure bei Kindern und Jugendlichen mit Typ 1 Diabetes Mellitus in Deutschland und Österreich. Diabetol Stoffwechs 7:FV 57Google Scholar
  9. 9.
    Estacio RO, Jeffers BW, Gifford N, Schrier RW (2000) Effects of blood control on diabetic microvascular complications in patients with hypertension and type 2 diabetes. Diabetes Care 23(Suppl 2):B54–B64PubMedGoogle Scholar
  10. 10.
    Giordano C, Amato MC, Ciresi A et al (2011) Predictors of microvascular complications in type 1 diabetic patients at onset: the role of metabolic memory. Eur J Intern Med 22:266–274PubMedCrossRefGoogle Scholar
  11. 11.
    Glandt M, Bloomgarden ZT (2011) Hypertension in diabetes: treatment considerations. J Clin Hypertens (Greenwich) 13:314–318Google Scholar
  12. 12.
    Hansson L, Zanchetti A, Carruthers SG et al (1998) Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the hypertension optimal treatment randomised trial. HOT study group. Lancet 351:1755–1762PubMedCrossRefGoogle Scholar
  13. 13.
    Hasanovic E, Tulumovic D, Imamovic I et al (2009) Microalbuminuria and ultrasound characteristics of kidneys in children and adolescents with diabetes mellitus type 1. Med Arh 63:133–136PubMedGoogle Scholar
  14. 14.
    Heijnen BF, Peutz-Koostra CJ, Mullins JJ et al (2011) Transient renin-angiotensin system stimulation in an early stage of life causes sustained hypertension in rats. J Hypertens 29:2369–2380PubMedCrossRefGoogle Scholar
  15. 15.
    Hermida RC, Ayala DE, Mojon A, Fernandez JR (2011) Decreasing sleep-time blood pressure determined by ambulatory monitoring reduces cardiovascular risk. J Am Coll Cardiol 58:1165–1173PubMedCrossRefGoogle Scholar
  16. 16.
    Holterhus P, Beyer PM, Bürger-Büsing J et al (2009) Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Kindes- und Jugendalter. Evidenz basierte Leitlinie der AGPD und der DDG, Kirchheim VerlagGoogle Scholar
  17. 17.
    IDF/ISPAD (2011) Global IDF/ISPAD guideline for diabetes in childhood and adolescence. http://www.ispad.org Google Scholar
  18. 18.
    Inoue A, Yanagisawa M, Kimura S et al (1989) The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A 86: 2863–2867PubMedCrossRefGoogle Scholar
  19. 19.
    Juonala M, Järvisalo MJ, Mäki-Torkko N et al (2005) Risk factors identified in childhood and decreased carotid artery elasticity in adulthood: the Cardiovascular Risk in Young Finns Study. Circulation. 112:1486–1493Google Scholar
  20. 20.
    Knerr I, Dost A, Lepler R et al (2008) Tracking and prediction of arterial blood pressure from childhood to young adulthood in 868 patients with type 1 diabetes: a multi-center, longitudinal survey in Germany and Austria. Diabetes Care 31:726–727PubMedCrossRefGoogle Scholar
  21. 21.
    Lash JM, Nase G P, Bohlen HG (1999) Acute hyperglycemia depresses arteriolar NO formation in skeletal muscle. Am J Physiol 277:H1513–H1520PubMedGoogle Scholar
  22. 22.
    Lurbe E, Redon J, Kesani A et al (2002) Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med 347:797–805PubMedCrossRefGoogle Scholar
  23. 23.
    Marcovecchio ML, Chiarelli F (2011) Microvascular diasease in children and adolescents with type 1 diabetes and obesity. Pediatr Nephrol 26:365–375PubMedCrossRefGoogle Scholar
  24. 24.
    Marcovecchio ML, Tossavainen PH, Dunger DB (2010) Prevention and treatment of microvascular disease in childhood type 1 diabetes. Br Med Bull 94:145–164PubMedCrossRefGoogle Scholar
  25. 25.
    Meguid El Nahas A, Bello AK (2005) Chronic kidney disease: the global challenge. Lancet 365:331–340Google Scholar
  26. 26.
    Möllsten A, Svensson M, Waernbaum I et al (2010) Cumulative risk, age at onset, and sex-specific differences for developing end-stage renal disease in young patients with type 1 diabetes. Diabetes 59:1803–1808PubMedCrossRefGoogle Scholar
  27. 27.
    Munroe PB, Caulfield MJ (2000) Genetics of hypertension. Curr Opin Genet Dev 10:325–329PubMedCrossRefGoogle Scholar
  28. 28.
    Nietert PJ, Wessell AM, Feifer C et al (2006) Effect of terminal digit preference on blood pressure measurement and treatment in primary care, Am J Hypertens 19:147–152Google Scholar
  29. 29.
    Nordwall M, Bojestig M, Arnqvist HJ et al (2004) Declining incidence of severe retinopathy and persisting decrease of nephropathy in an unselected population of type 1 diabetes - the Linköping Diabetes Complications Study. Diabetologia 47:1266–1272PubMedCrossRefGoogle Scholar
  30. 30.
    Oikonen M, Tikkanen E, Juhola J et al (2011) Genetic variants and blood pressure in a population-based cohort: the cardiovascular risk in young Finns study. Hypertension 58:1079–1085PubMedCrossRefGoogle Scholar
  31. 31.
    Pickering TG, Hall JE, Appel LJ (2005) Recommendations for blood pressure measurement in humans and experimental animals: Part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension 45:142–161PubMedGoogle Scholar
  32. 32.
    Raile K, Galler A, Hofer S et al (2007) Diabetic nephropathy in 27,805 children, adolescents, and adults with type 1 diabetes. Diabetes Care 30:2523–2528PubMedCrossRefGoogle Scholar
  33. 33.
    Reboldi G, Gentile G, Angeli F et al (2011) Effects of intensive blood pressure reduction on myocardial infarction and stroke in diabetes: a meta-analysis in 73,913 patients. J Hypertens 29:1253–1269PubMedCrossRefGoogle Scholar
  34. 34.
    Rosenbauer J, Dost A, Karges B et al (2012) Improved metabolic control in children and adolescents with type 1 diabetes - a trend analysis using prospective multi-centre data from Germany and Austria. Diabetes Care 35:80–86PubMedCrossRefGoogle Scholar
  35. 35.
    Salardi S, Balsamo C, Zucchini G et al (2011) High rate of regression from micro-macroalbuminuria to normoalbuminuria in children and adolescents with type 1 diabetes treated or not with enalapril: the influence of HDL cholesterol. Diabetes Care 34:424–429PubMedCrossRefGoogle Scholar
  36. 36.
    Schultz CJ, Konopelska-Bahu T, Dalton RN et al (1999) Microalbuminuria prevalence varies with age, sex, and puberty in children with type 1 diabetes followed from diagnosis in a longitudinal study. Oxford Regional Prospective Study Group. Diabetes Care 22:495–502PubMedCrossRefGoogle Scholar
  37. 37.
    Soergel M, Kirschstein M, Busch C et al (1997) Oscillometric twenty-four-hour ambulatory blood pressure values in healthy children and adolescents: a multicenter trial including 1,141 subjects. J Pediatr 130:178–184PubMedCrossRefGoogle Scholar
  38. 38.
    Soergel M, Schaefer F (2002) Effect of hypertension on the progression of chronic renal failure in children. Am J Hypertens 15:53S–56SPubMedCrossRefGoogle Scholar
  39. 39.
    Solini A (2011) Pathophysiology, prevention and management of chronic kidney disease in the hypertensive patient with diabetes mellitus. J Clin Hypertens (Greenwich) 13:252–257Google Scholar
  40. 40.
    Stergiou GS, Lourida P, Tzamouranis D (2011) Replacing mercury manometer with an oscillometric device in a hypertension clinic: implications for clinical decision making. J Hum Hypertens 25:692–698PubMedCrossRefGoogle Scholar
  41. 41.
    Svensson M, Nyström L, Schön S, Dahlquist G (2006) Age at onset of childhood-onset type 1 diabetes and the development of end-stage renal disease. Diabetes Care 29:538–542PubMedCrossRefGoogle Scholar
  42. 42.
    Ittersum FJ van, Schram MT, Heijden-Spek JJ van der et al (2004) Autonomic nervous function, arterial stiffness and blood pressure in patients with type I diabetes mellitus and normal urinary albumin excretion. J Hum Hypertens 18:761–768PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Dost
    • 1
  • V. Dickgießer
    • 2
  • R.W. Holl
    • 3
  • J.G. Kreuder
    • 4
  1. 1.Klinik für Kinder- und JugendmedizinUniversitätsklinikum JenaJenaDeutschland
  2. 2.Abteilung Gynäkologie, Senologie und GeburtshilfeKatholisches Klinikum Koblenz-MontabaurKoblenzDeutschland
  3. 3.Abteilung für EpidemiologieMedizinische Fakultät, Universität UlmUlmDeutschland
  4. 4.Zentrum für Kinderheilkunde und JugendmedizinKlinik für Kinderkardiologie und angeborene Herzfehler, Universitätsklinikum Gießen und MarburgGießenDeutschland

Personalised recommendations