Der Diabetologe

, Volume 8, Issue 1, pp 18–25

Biomarker und Risikoprädiktion des Typ-2-Diabetes

Leitthema
  • 102 Downloads

Zusammenfassung

Das Risiko, an Typ-2-Diabetes zu erkranken, lässt sich durch eine geeignete Lebensstilintervention deutlich reduzieren. Daher stellt sich die Frage, ob sich Biomarker zur Verbesserung der Diabetesprädiktion und somit zur Identifikation von Hochrisikopersonen nutzen lassen. Die prognostische Güte von Biomarkern kann dabei in Langzeitstudien mit Hilfe des c-Wertes abgeschätzt werden. Nüchternglukose sowie HbA1c sind starke Diabetesprädiktoren, die für eine Risikovorhersage auch zusätzlich zu konventionellen, nichtinvasiven Risikofaktoren verwendet werden sollten. Auch eine Bestimmung von Blutlipiden (HDL-Cholesterol, Triglyzeride) ist in diesem Zusammenhang sinnvoll. Obwohl auch die 2-Stunden-Glukose einen informativen Parameter darstellt, wird diese in Arztpraxen nur selten gemessen. Neuere Biomarker wie Entzündungsmarker (CRP) oder das Adipozytokin Adiponektin scheinen über diese Parameter hinaus wenig zusätzliche Information zur Vorhersage des Typ-2-Diabetes zu besitzen. Auch Informationen zu genetischen Varianten sind gegenwärtig nicht für eine Vorhersage nutzbar. Ein zweistufiges Verfahren, mit einem Prognosemodell basierend auf nichtinvasiven Parametern als ersten Schritt sowie routinemäßig zu erhebende Blutparameter wie Lipide und Glukosewerte als zweiten Schritt, erlaubt eine präzise Abschätzung des Diabetesrisikos.

Schlüsselwörter

Biomarker c-Statistik Nüchternglukose Typ-2-Diabetes-mellitus Vorhersagemodell 

Biomarkers and risk prediction of type 2 diabetes

Abstract

The preventability of type 2 diabetes has been demonstrated, however, it remains unclear if biomarkers can be used to identify high-risk individuals. The prognostic value of biomarkers can be evaluated based on the c-statistic in long-term studies. Fasting glucose and HbA1c are strong predictors of diabetes risk and should be used for quantifying risk also in addition to conventional non-invasive risk factors. Moreover, determination of blood lipids (HDL cholesterol, triglycerides) is useful. Although 2 h-glucose is an informative risk marker it is only rarely measured in clinical practice. Novel biomarkers like inflammatory markers (CRP) or adiponectin do not seem to provide substantial information over and above more common parameters. Also, information on genetic variants is so far not useful for diabetes risk prediction. A two-step screening approach, with a prognostic model based on non-invasive parameters as first step and routine blood parameters like lipids and glucose measures as second step, allows a precise quantification of risk.

Keywords

Biomarker c-statistic Fasting glucose Prediction model Type 2 diabetes mellitus 

Literatur

  1. 1.
    Abdul-Ghani MA, Lyssenko V, Tuomi T et al (2009) Fasting versus postload plasma glucose concentration and the risk for future type 2 diabetes: results from the Botnia Study. Diabetes Care 32:281–286PubMedCrossRefGoogle Scholar
  2. 2.
    Anonymous (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  3. 3.
    Buijsse B, Simmons RK, Griffin SJ et al (2011) Risk assessment tools for identifying individuals at risk of developing type 2 diabetes. Epidemiol Rev 33:46–62PubMedCrossRefGoogle Scholar
  4. 4.
    Chao C, Song Y, Cook N et al (2010) The lack of utility of circulating biomarkers of inflammation and endothelial dysfunction for type 2 diabetes risk prediction among postmenopausal women: the Women’s Health Initiative Observational Study. Arch Intern Med 170:1557–1565PubMedCrossRefGoogle Scholar
  5. 5.
    Cornelis MC, Qi L, Zhang C et al (2009) Joint effects of common genetic variants on the risk for type 2 diabetes in U.S. men and women of European ancestry. Ann Intern Med 150:541–550PubMedGoogle Scholar
  6. 6.
    De Miguel-Yanes JM, Shrader P, Pencina MJ et al (2011) Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care 34:121–125CrossRefGoogle Scholar
  7. 7.
    Faerch K, Borch-Johnsen K, Holst JJ et al (2009) Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: does it matter for prevention and treatment of type 2 diabetes? Diabetologia 52:1714–1723PubMedCrossRefGoogle Scholar
  8. 8.
    Ford ES, Li C, Sattar N (2008) Metabolic syndrome and incident diabetes: current state of the evidence. Diabetes Care 31:1898–1904PubMedCrossRefGoogle Scholar
  9. 9.
    Gerstein HC, Santaguida P, Raina P et al (2007) Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res Clin Pract 78:305–312PubMedCrossRefGoogle Scholar
  10. 10.
    Herder C, Baumert J, Zierer A et al (2011) Immunological and cardiometabolic risk factors in the prediction of type 2 diabetes and coronary events: MONICA/KORA Augsburg case-cohort study. PLoS One 6:e19852PubMedCrossRefGoogle Scholar
  11. 11.
    Herder C, Karakas M, Koenig W (2011) Biomarkers for the prediction of type 2 diabetes and cardiovascular disease. Clin Pharmacol Ther 90:52–66PubMedCrossRefGoogle Scholar
  12. 12.
    Kanaya AM, Wassel Fyr CL, De Rekeneire N et al (2005) Predicting the development of diabetes in older adults: the derivation and validation of a prediction rule. Diabetes Care 28:404–408PubMedCrossRefGoogle Scholar
  13. 13.
    Kolberg JA, Jorgensen T, Gerwien RW et al (2009) Development of a type 2 diabetes risk model from a panel of serum biomarkers from the Inter99 cohort. Diabetes Care 32:1207–1212PubMedCrossRefGoogle Scholar
  14. 14.
    Lee CC, Adler AI, Sandhu MS et al (2009) Association of C-reactive protein with type 2 diabetes: prospective analysis and meta-analysis. Diabetologia 52:1040–1047PubMedCrossRefGoogle Scholar
  15. 15.
    Lyssenko V, Jonsson A, Almgren P et al (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359:2220–2232PubMedCrossRefGoogle Scholar
  16. 16.
    Meigs JB, Shrader P, Sullivan LM et al (2008) Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 359:2208–2219PubMedCrossRefGoogle Scholar
  17. 17.
    Rathmann W, Kowall B, Heier M et al (2010) Prediction models for incident type 2 diabetes mellitusin the older population: KORA S4/F4 cohort study. Diabet Med 27:1116–1123PubMedCrossRefGoogle Scholar
  18. 18.
    Rathmann W, Strassburger K, Heier M et al (2009) Incidence of Type 2 diabetes in the elderly German population and the effect of clinical and lifestyle risk factors: KORA S4/F4 cohort study. Diabet Med 26:1212–1219PubMedCrossRefGoogle Scholar
  19. 19.
    Sattar N, Wannamethee SG, Forouhi NG (2008) Novel biochemical risk factors for type 2 diabetes: pathogenic insights or prediction possibilities? Diabetologia 51:926–940PubMedCrossRefGoogle Scholar
  20. 20.
    Schmidt MI, Duncan BB, Bang H et al (2005) Identifying individuals at high risk for diabetes: The Atherosclerosis Risk in Communities study. Diabetes Care 28:2013–2018PubMedCrossRefGoogle Scholar
  21. 21.
    Schulze MB, Fritsche A, Boeing H et al (2010) Fasting plasma glucose and Type 2 diabetes risk: a non-linear relationship. Diabet Med 27:473–476PubMedCrossRefGoogle Scholar
  22. 22.
    Schulze MB, Hu FB (2005) Primary prevention of diabetes: what can be done and how much can be prevented? Annu Rev Public Health 26:445–467PubMedCrossRefGoogle Scholar
  23. 23.
    Schulze MB, Weikert C, Pischon T et al (2009) Use of multiple metabolic and genetic markers to improve the prediction of type 2 diabetes: the EPIC-Potsdam Study. Diabetes Care 32:2116–2119PubMedCrossRefGoogle Scholar
  24. 24.
    Stern MP, Williams K, Haffner SM (2002) Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Ann Intern Med 136:575–581PubMedGoogle Scholar
  25. 25.
    Talmud PJ, Hingorani AD, Cooper JA et al (2010) Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 340:b4838PubMedCrossRefGoogle Scholar
  26. 26.
    Tirosh A, Shai I, Tekes-Manova D et al (2005) Normal fasting plasma glucose levels and type 2 diabetes in young men. N Engl J Med 353:1454–1462PubMedCrossRefGoogle Scholar
  27. 27.
    Unwin N, Shaw J, Zimmet P et al (2002) Impaired glucose tolerance and impaired fasting glycaemia: the current status on definition and intervention. Diabet Med 19:708–723PubMedCrossRefGoogle Scholar
  28. 28.
    Van Hoek M, Dehghan A, Witteman JC et al (2008) Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 57:3122–3128CrossRefGoogle Scholar
  29. 29.
    Wang TJ, Larson MG, Vasan RS et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17:448–453PubMedCrossRefGoogle Scholar
  30. 30.
    Wilson PW, Meigs JB, Sullivan L et al (2007) Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med 167:1068–1074PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Abteilung Molekulare EpidemiologieDeutsches Institut für Ernährungsforschung Potsdam-RehbrückeNuthetalDeutschland
  2. 2.Institut für Biometrie und EpidemiologieDeutsches Diabetes-Zentrum (DDZ)DüsseldorfDeutschland

Personalised recommendations