Der Diabetologe

, Volume 7, Issue 5, pp 335–346

HbA1c – ein Alleskönner?

Therapiekontrolle, Screening und Diagnose des Diabetes
CME Weiterbildung · Zertifizierte Fortbildung

Zusammenfassung

Der HbA1c-Wert ist ein wichtiger klinischer Parameter für die Beurteilung der Güte der Diabeteseinstellung und der Entwicklung oder Progression diabetischer Sekundärkomplikationen. Wesentliche Bedingung für ein solches Kriterium ist seine hohe Messgenauigkeit. Daher stehen einige Anmerkungen zur Messgenauigkeit von Glukose- und HbA1c-Werten am Anfang dieses Beitrags. Insbesondere wird darauf hingewiesen, dass es trotz der Standardisierung der HbA1c-Messung eine Reihe von Indikationen gibt, bei denen der HbA1c den längerfristigen, mittleren Glukosespiegel über- oder unterschätzt. Anschließend folgen einige Informationen zu der Frage, inwiefern sich aus dem HbA1c brauchbare Werte für den mittleren Glukosespiegel abschätzen lassen. Es schließen sich einige epidemiologische Befunde insbesondere zur Abhängigkeit der Diabetesprävalenz vom gewählten Diagnosekriterium an. Mit Blick auf eine Reihe offener Fragen wird abschließend ein von der Deutschen Diabetes-Gesellschaft (DDG) vorgeschlagener Algorithmus empfohlen, der beide diagnostischen Kriterien integriert.

Schlüsselwörter

Blutglukose Glukosetoleranztest Labortechniken und -prozeduren Störfaktoren Algorithmen 

HbA1c – an all-round talent?

Therapy control, screening and diagnosis of diabetes

Abstract

The HbA1c value is an important clinical parameter for assessment of the accuracy of the diabetes adjustment and the development or progression of secondary complications of diabetes. An essential condition for such a criterion is high measurement accuracy. Therefore some comments on the accuracy of measurement of glucose and HbA1c values are made at the beginning of this article. Particular emphasis is placed on the fact that despite standardization of HbA1c measurement there are a number of indications where the long-term average glucose level will be overestimated or underestimated by HbA1c. Some information will be given on the question to what extent usable values for the average glucose level can be estimated from HbA1c followed by some epidemiological findings in particular on the dependence of the prevalence of diabetes on the diagnosis criterion selected. With respect to a number of open questions an algorithm proposed by the German Diabetes Society (DDG) is recommended which integrates both diagnostic criteria.

Keywords

Blood glucose Glucose tolerance test Laboratory techniques and procedures Confounding factors Algorithms 

Literatur

  1. 1.
    American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33:S11–S61CrossRefGoogle Scholar
  2. 2.
    Balion CM, Raina PS, Gerstein HC et al (2007) Reproducibility of impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) classification: a systematic review. Clin Chem Lab Med 45:1180–1185PubMedCrossRefGoogle Scholar
  3. 3.
    Christensen DL, Witte DR, Kaduka L et al (2010) Moving to an A1C-based diagnosis of diabetes has a different impact on prevalence in different ethnic groups. Diabetes Care 33:580–582PubMedCrossRefGoogle Scholar
  4. 4.
    Cohen RM, Haggerty S, Herman WH (2010) HbA1c for the diagnosis of diabetes and prediabetes: is it time for a mid-course correction? J Clin Endocrinol Metab 95:5203–5206PubMedCrossRefGoogle Scholar
  5. 5.
    Colagiuri S, Lee CM, Wong TY et al; DETECT-2 Collaboration Writing Group (2011) Glycemic thresholds for diabetes-specific retinopathy: implications for diagnostic criteria for diabetes. Diabetes Care 34:145–150PubMedCrossRefGoogle Scholar
  6. 6.
    Consensus Committee (2007) Consensus statement on the worldwide standardization of the hemoglobin A1C measurement: the American Diabetes Association, European Association for the Study of Diabetes, International Federation of Clinical Chemistry and Laboratory Medicine, and the International Diabetes Federation. Diabetes Care 30:2399–2400CrossRefGoogle Scholar
  7. 7.
    Dagogo-Jack S (2010) Pitfalls in the use of HbA1c as a diagnostic test: the ethnic conundrum. Nat Rev Endocrinol 6:589–593PubMedGoogle Scholar
  8. 8.
    Davidson MB, Schriger DL (2010) Effect of age and race/ethnicity on HbA1c levels in people without known diabetes mellitus: implications for the diagnosis of diabetes. Diabetes Res Clin Pract 87:415–421PubMedCrossRefGoogle Scholar
  9. 9.
    Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Research Group, Nathan DM, Zinman B, Cleary PA et al (2009) Modern-day clinical course of type 1 diabetes mellitus after 30 years‘ duration: the diabetes control and complications trial/epidemiology of diabetes interventions and complications and Pittsburgh epidemiology of diabetes complications experience (1983-2005). Arch Intern Med 169:1307–1316CrossRefGoogle Scholar
  10. 10.
    Diabetes Prevention Program Research Group (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403CrossRefGoogle Scholar
  11. 11.
    Fajans SS, Herman WH, Oral EA (2011) Insufficient sensitivity of hemoglobin A(1C) determination in diagnosis or screening of early diabetic states. Metabolism 60:86–91PubMedCrossRefGoogle Scholar
  12. 12.
    Florez JC (2010) A genome-wide association study of treated A1C: a genetic needle in an environmental haystack? Diabetes 59:332–334PubMedCrossRefGoogle Scholar
  13. 13.
    Gaede P, Lund-Andersen H, Parving HH, Pedersen O (2008) Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 358:580–591PubMedCrossRefGoogle Scholar
  14. 14.
    Herman WH, Dungan KM, Wolffenbuttel BH et al (2009) Racial and ethnic differences in mean plasma glucose, hemoglobin A1c, and 1,5-anhydroglucitol in over 2000 patients with type 2 diabetes. J Clin Endocrinol Metab 94:1689–94PubMedCrossRefGoogle Scholar
  15. 15.
    Holman RR, Paul SK, Bethel MA et al (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589PubMedCrossRefGoogle Scholar
  16. 16.
    Home PD, Pocock SJ, Beck-Nielsen H et al; RECORD Study Team (2009) Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 373:2125–2135PubMedCrossRefGoogle Scholar
  17. 17.
    Mosca A, Goodall I, Hoshino T et al; International Federation of Clinical Chemistry and Laboratory Medicine, IFCC Scientific Division (2007) Global standardization of glycated hemoglobin measurement: the position of the IFCC Working Group. Clin Chem Lab Med 45:1077–1080PubMedCrossRefGoogle Scholar
  18. 18.
    International Expert Committee (2009) International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 32:1327–1334CrossRefGoogle Scholar
  19. 19.
    Jeppsson JO, Kobold U, Barr J et al; International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) (2002) Approved IFCC reference method for the measurement of HbA1c in human blood. Clin Chem Lab Med 40:78–89PubMedCrossRefGoogle Scholar
  20. 20.
    Kamps JL, Hempe JM, Chalew SA (2010) Racial disparity in A1C independent of mean blood glucose in children with type 1 diabetes. Diabetes Care 33:1025–1027PubMedCrossRefGoogle Scholar
  21. 21.
    Kerner W, Brückel J (2010) Definition, Klassifikation und Diagnostik des Diabetes mellitus. Diabetol Stoffwechs 5:S109–S112CrossRefGoogle Scholar
  22. 22.
    Kirk JK, D’Agostino RB Jr, Bell RA et al (2006) Disparities in HbA1c levels between African-American and non-Hispanic white adults with diabetes: a meta-analysis. Diabetes Care 29:2130–2136PubMedCrossRefGoogle Scholar
  23. 23.
    Kosaka K, Noda M, Kuzuya T (2005) Prevention of type 2 diabetes by lifestyle intervention: a Japanese trial in IGT males. Diabetes Res Clin Pract 67:152–162PubMedCrossRefGoogle Scholar
  24. 24.
    Kowall B, Rathmann W (2011) Konsequenzen eines Wechsels von Glukose- zu HbA1c-basierten Kriterien für die Diabetesdiagnose: ein narratives Review aus epidemiologischer Sicht. Diabetol Stoffwechs 6:32–42CrossRefGoogle Scholar
  25. 25.
    Lenters-Westra E, Slingerland RJ (2010) Six of eight hemoglobin A1c point-of-care instruments do not meet the general accepted analytical performance criteria. Clin Chem 56:44–52PubMedCrossRefGoogle Scholar
  26. 26.
    Levitan EB, Song Y, Ford ES, Liu S (2004) is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med 164:2147–2155PubMedCrossRefGoogle Scholar
  27. 27.
    Likhari T, Gama R (2009) Glycemia-independent ethnic differences in HbA(1c) in subjects with impaired glucose tolerance. Diabet Med 26:1068–1069PubMedCrossRefGoogle Scholar
  28. 28.
    Lindström J, Louheranta A, Mannelin M et al (2003) The Finnish Diabetes Prevention Study (DPS): Lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care 26:3230–3236PubMedCrossRefGoogle Scholar
  29. 29.
    Lindström J, Ilanne-Parikka P, Peltonen M et al (2006) Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: the follow-up results of the Finnish Diabetes Prevention Study. Lancet 368:1673–1679PubMedCrossRefGoogle Scholar
  30. 30.
    Martin S, Buchholz G, Fach E et al (2009) Rolle der Selbstmessung der Blutglukose (SMBG) bei Diabetes mellitus. Empfehlungen für eine individualisierte Messfrequenz. Diabetologe 5:460–470CrossRefGoogle Scholar
  31. 31.
    Meisinger C, Strassburger K, Heier M et al (2010) Prevalence of undiagnosed diabetes and impaired glucose regulation in 35–59-year-old individuals in Southern Germany: the KORA F4 Study. Diabet Med 27:360–362PubMedCrossRefGoogle Scholar
  32. 32.
    Nathan DM, Kuenen J, Borg R et al; A1c-Derived Average Glucose Study Group (2008) Translating the A1C assay into estimated average glucose values (eAG). Diabetes Care 31:1473–1478PubMedCrossRefGoogle Scholar
  33. 33.
    Pajunen P, Peltonen M, Eriksson JG et al for the Finnish Diabetes Prevention Study (DPS) (2011) HbA1c in diagnosing and predicting type 2 diabetes in impaired glucose tolerance: the Finnish Diabetes Prevention Study. Diabet Med 28:36–42PubMedCrossRefGoogle Scholar
  34. 34.
    Pan XR, Li GW, Hu YH et al (1997) Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 20:537–544PubMedCrossRefGoogle Scholar
  35. 35.
    Pani LN, Korenda L, Meigs JB et al (2008) Effect of aging on A1C in individuals without diabetes. Evidence from the Framingham Offspring Study and the National Health and Nutrition Examination Survey 2001–2004. Diabetes Care 31:1991–1996PubMedCrossRefGoogle Scholar
  36. 36.
    Peter A, Fritsche A, Stefan N et al (2011) Diagnostic value of hemoglobin A1c for type 2 diabetes mellitus in a population at risk. Exp Clin Endocrinol Diabetes 119:234–237PubMedCrossRefGoogle Scholar
  37. 37.
    Ramachandran A, Snehalatha C, Mary S et al (2006) The Indian Diabetes Prevention Programme shows that lifestylemodification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP‑1). Diabetologia 49:289–297PubMedCrossRefGoogle Scholar
  38. 38.
    Rathmann W, Kowall B, Tamayo T et al (2010) Hemoglobin A1c and glucose criteria identify different subjects as having type 2 diabetes in middle-aged and older populations: The KORA S4/F4 Study. Ann Med, doi 10.3109/07853890.2010.531759Google Scholar
  39. 39.
    Reinauer H, Scherbaum W(2009) Diabetes mellitus: neuer Referenzstandard für HbA1c. Dtsch Arztebl 106:A805–A806Google Scholar
  40. 40.
    Rohlfing CL, Wiedmeyer HM, Little RR et al (2002) Defining the relationship between plasma glucose and HbA(1c): analysis of glucose profiles and HbA(1c) in the Diabetes Control and Complications Trial. Diabetes Care 25:275–278PubMedCrossRefGoogle Scholar
  41. 41.
    Schernthaner G (2010) Diabetes and Cardiovascular Disease: is intensive glucose control beneficial or deadly? Lessons from ACCORD, ADVANCE, VADT, UKPDS, PROactive, and NICE-SUGAR. Wien Med Wochenschr 160:8–19PubMedCrossRefGoogle Scholar
  42. 42.
    Schleicher E, Landgraf R (2011) Diagnose und Differentialdiagnose. In: Häring HU, Gallwitz G, Müller-Wieland D, Usadel KH, Mehnert H (Hrsg) Diabetologie in Klinik und Praxis. Thieme, StuttgartGoogle Scholar
  43. 43.
    Selvin E, Marinopoulos S, Berkenblit G et al (2004) Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med 14:421–431Google Scholar
  44. 44.
    Selvin E, Crainiceanu CM, Brancati FL, Coresh J (2007) Short-term variability in measures of glycemia and implications for the classification of diabetes. Arch Intern Med 167:1545–1551PubMedCrossRefGoogle Scholar
  45. 45.
    Selvin E, Steffes MW, Zhu H et al (2010) Glycated hemoglobin, diabetes, and cardiovascular risk in non-diabetic adults. N Engl J Med 362:800–811PubMedCrossRefGoogle Scholar
  46. 46.
    Shichiri M, Kishikawa H, Ohkubo Y, Wake N (2000) Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients. Diabetes Care 23(Suppl 2):B21–29PubMedGoogle Scholar
  47. 47.
    Skriver et al (2010) HbA1c as predictor of all-cause mortality in individuals at high risk with NGT identified by screening. A follow-up of the ADDITION study of intensive treatment in people with screen-detected diabetes in primary care. Diabetologia 53:2328–2333PubMedCrossRefGoogle Scholar
  48. 48.
    Snieder H, Sawtell PA, Ross L et al (2001) HbA1c levels are genetically determined even in type 1 diabetes. Evidence from healthy and diabetic twins. Diabetes 50:2858–2863PubMedCrossRefGoogle Scholar
  49. 49.
    Szymezak J, Lavalard E, Martin M et al (2009) Carbamylated hemoglobin remains a critical issue in HbA1c measurements. Clin Chem Lab Med 47:612–613PubMedCrossRefGoogle Scholar
  50. 50.
    DECODE Study Group (2003) Age- and sex-specific prevalences of diabetes and impaired glucose regulation in 13 European cohorts. Diabetes Care 26:61–69CrossRefGoogle Scholar
  51. 51.
    van’t Riet E, Alssema M, Rijkelijkhuizen JM et al (2010) Relationship between A1C and glucose levels in the general Dutch population: the new Hoorn study. Diabetes Care 33:61–66CrossRefGoogle Scholar
  52. 52.
    Weykamp C, John WG, Mosca A et al (2008) The IFCC reference measurement system for HbA1c: a 6-year progress report. Clin Chem 54:240–248PubMedCrossRefGoogle Scholar
  53. 53.
    WHO (2011) Use of glycated haemoglobin (HbA1c) in the Diagnosis of diabetes mellitus. Abbreviated report of a WHO consultation WHO/NMH/CHP/CPM/11.1Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.DiabetesStiftung (DDS)MünchenDeutschland
  2. 2.Deutsches Diabetes Zentrum, Institut für Biometrie und EpidemiologieLeibniz-Zentrum für Diabetesforschung, Heinrich-Heine-UniversitätDüsseldorfDeutschland

Personalised recommendations