Der Diabetologe

, Volume 4, Issue 1, pp 30–40 | Cite as

Diabetes mellitus Typ 2

Pathophysiologie und Prävention
Leitthema
  • 266 Downloads

Zusammenfassung

Die Zunahme der Diabetesprävalenz lässt sich nicht allein durch genetische Prädisposition erklären. Vielmehr muss es diverse exogene Risikofaktoren geben, die zu einem großen Teil auf einem veränderten Lebensstil der Bevölkerung beruhen. Auf die Frage, wie dieser mit der Pathogenese eines Typ-2-Diabetes und dessen Therapie zusammenhängt, versuchten zahlreiche, 2006 publizierte Studien eine Antwort zu geben. Bei der Pathogenese werden die beiden Faktoren Insulinresistenz und -sekretion an erster Stelle diskutiert. Das Ausmaß Letzterer scheint den aktuellen Glukosestatus zu bestimmen. Aktiviert durch subklinische Inflammationen spielt auch das Immunsystem über die Ausschüttung von Immunmediatoren eine pathogenetische Rolle. Auch der Adiponektinspiegel als Produkt des Fettgewebes ist für die Krankheitsentstehung von Bedeutung. Als wesentliche exogene Auslösefaktoren eines Typ-2-Diabetes haben sich Übergewicht, Bewegungsmangel und eine ungünstige Ernährung entpuppt. Änderungen des Lebensstils zeigen sowohl bei der Prävention als auch bei der Behandlung eines manifesten Diabetes die besten Effekte. Die Langzeiteffekte verbessern die Lebensqualität und -erwartung deutlich, auch über die Zeit der eigentlichen Maßnahme hinaus.

Schlüsselwörter

Übergewicht Bewegungsmangel Lebensstil Genetische Prädisposition Diabetes mellitus Typ 2 

Diabetes mellitus type 2

Pathophysiology and prevention

Abstract

The growing number of patients with diabetes cannot be explained solely by genetic predisposition; there are numerous exogenous risk factors that are to a large extent based on people’s changing lifestyles. Numerous studies published in 2006 tried to answer the question of how lifestyle influences the onset and therapy of type 2 diabetes. Insulin resistance and insulin secretion are considered to be the most significant factors in its pathogenesis. The prevailing glycaemic status seems to be determined by the level of secreted insulin. Activated by subclinical inflammation, the immune system also plays a role in pathogenesis by secreting immune mediators. Finally, the level of adiponectin, a product of fat tissue, is an important factor in the onset of the disease. Overweight, lack of exercise, and suboptimal nutrition have been shown to be exogenous triggers of type 2 diabetes. Lifestyle interventions show the best results both in preventing diabetes and treating existing disease, and their long-term effects considerably improve quality of life and life expectancy, even beyond the time frame of the therapeutic intervention itself.

Keywords

Overweight Lack of exercise Lifestyle Genetic predisposition Diabetes mellitus type 2 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Aas AM, Seljeflot I, Torjesen PA et al. (2006) Blood glucose lowering by means of lifestyle intervention has different effects on adipokines as compared with insulin treatment in subjects with type 2 diabetes. Diabetologia 49: 872–880PubMedCrossRefGoogle Scholar
  2. 2.
    Abdul-Ghani MA, Williams K, Defronzo R et al. (2006) Risk of progression to type 2 diabetes based on relationship between postload plasma glucose and fasting plasma glucose. Diabetes Care 29: 1613–1618PubMedCrossRefGoogle Scholar
  3. 3.
    Ackermann RT, Marrero DG, Hicks KA et al. (2006) An evaluation of cost sharing to finance a diet and physical activity intervention to prevent diabetes. Diabetes Care 29: 1237–1241PubMedCrossRefGoogle Scholar
  4. 4.
    Andersen LF, Jacobs DR Jr, Carlsen MH et al. (2006) Consumption of coffee is associated with reduced risk of death attributed to inflammatory and cardiovascular diseases in the Iowa Women’s Health Study. Am J Clin Nutr 83: 1039–1046PubMedGoogle Scholar
  5. 5.
    Atanasov AG, Dzyakanchuk AA, Schweizer RA et al. (2006) Coffee inhibits the reactivation of glucocorticoids by 11beta-hydroxysteroid dehydrogenase type 1: a glucocorticoid connection in the anti-diabetic action of coffee? FEBS Lett 580: 4081–4085PubMedCrossRefGoogle Scholar
  6. 6.
    Barinas-Mitchell E, Kuller LH, Sutton-Tyrrell K et al. (2006) Effect of weight loss and nutritional intervention on arterial stiffness in type 2 diabetes. Diabetes Care 29: 2218–2222PubMedCrossRefGoogle Scholar
  7. 7.
    Bidel S, Hu G, Qiao Q et al. (2006) Coffee consumption and risk of total and cardiovascular mortality among patients with type 2 diabetes. Diabetologia 49: 2618–2626PubMedCrossRefGoogle Scholar
  8. 8.
    Bock G, Man CD, Campioni M et al. (2006) Pathogenesis of pre-diabetes: mechanisms of fasting and postprandial hyperglycemia in people with impaired fasting glucose and/or impaired glucose tolerance. Diabetes 55: 3536–3549PubMedCrossRefGoogle Scholar
  9. 9.
    Bosch J, Yusuf S, Gerstein HC et al. (2006) Effect of ramipril on the incidence of diabetes. N Engl J Med 355: 1551–1562PubMedCrossRefGoogle Scholar
  10. 10.
    Cho YM, Youn BS, Lee H et al. (2006) Plasma retinol-binding protein-4 concentrations are elevated in human subjects with impaired glucose tolerance and type 2 diabetes. Diabetes Care 29: 2457–2461PubMedCrossRefGoogle Scholar
  11. 11.
    Davey SG, Bracha Y, Svendsen KH et al. (2005) Incidence of type 2 diabetes in the randomized multiple risk factor intervention trial. Ann Intern Med 142: 313–322Google Scholar
  12. 12.
    Englund OL, Brohall G, Behre CJ et al. (2006) Alcohol consumption in relation to metabolic regulation, inflammation, and adiponectin in 64-year-old Caucasian women: a population-based study with a focus on impaired glucose regulation. Diabetes Care 29: 908–913CrossRefGoogle Scholar
  13. 13.
    Festa A, Williams K, D’Agostino R Jr et al. (2006) The natural course of beta-cell function in nondiabetic and diabetic individuals: the Insulin Resistance Atherosclerosis Study. Diabetes 55: 1114–1120PubMedCrossRefGoogle Scholar
  14. 14.
    Finken MJ, Keijzer-Veen MG, Dekker FW et al. (2006) Preterm birth and later insulin resistance: effects of birth weight and postnatal growth in a population based longitudinal study from birth into adult life. Diabetologia 49: 478–485PubMedCrossRefGoogle Scholar
  15. 15.
    Flores MB, Fernandes MF, Ropelle ER et al. (2006) Exercise improves insulin and leptin sensitivity in hypothalamus of Wistar rats. Diabetes 55: 2554–2561PubMedCrossRefGoogle Scholar
  16. 16.
    Gerstein HC, Yusuf S, Bosch J et al. (2006) Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 368: 1096–1105PubMedCrossRefGoogle Scholar
  17. 17.
    Gleeson-Kreig JM (2006) Self-monitoring of physical activity: effects on self-efficacy and behavior in people with type 2 diabetes. Diabet Educ 32: 69–77CrossRefGoogle Scholar
  18. 18.
    Gottlieb DJ, Punjabi NM, Newman AB et al. (2005) Association of sleep time with diabetes mellitus and impaired glucose tolerance. Arch Intern Med 165: 863–867PubMedCrossRefGoogle Scholar
  19. 19.
    Graham TE, Yang Q, Bluher M et al. (2006) Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 354: 2552–2563PubMedCrossRefGoogle Scholar
  20. 20.
    Gubern C, Lopez-Bermejo A, Biarnes J et al. (2006) Natural antibiotics and insulin sensitivity: the role of bactericidal/permeability-increasing protein. Diabetes 55: 216–224PubMedCrossRefGoogle Scholar
  21. 21.
    Hamman RF, Wing RR, Edelstein SL et al. (2006) Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care 29: 2102–2107PubMedCrossRefGoogle Scholar
  22. 22.
    Herder C, Peltonen M, Koenig W et al. (2006) Systemic immune mediators and lifestyle changes in the prevention of type 2 diabetes: results from the Finnish Diabetes Prevention Study. Diabetes 55: 2340–2346PubMedCrossRefGoogle Scholar
  23. 23.
    Houston TK, Person SD, Pletcher MJ et al. (2006) Active and passive smoking and development of glucose intolerance among young adults in a prospective cohort: CARDIA study. BMJ 332: 1064–1069PubMedCrossRefGoogle Scholar
  24. 24.
    Hunt KJ, Hansis-Diarte A, Shipman K et al. (2006) Impact of parental smoking on diabetes, hypertension and the metabolic syndrome in adult men and women in the San Antonio Heart Study. Diabetologia 49: 2291–2298PubMedCrossRefGoogle Scholar
  25. 25.
    Imperatore G, Cheng YJ, Williams DE et al. (2006) Physical activity, cardiovascular fitness, and insulin sensitivity among U.S. adolescents: the National Health and Nutrition Examination Survey, 1999–2002. Diabetes Care 29: 1567–1572PubMedCrossRefGoogle Scholar
  26. 26.
    Iso H, Date C, Wakai K et al. (2006) The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Ann Intern Med 144: 554–562PubMedGoogle Scholar
  27. 27.
    Jonker JT, De Laet C, Franco OH et al. (2006) Physical activity and life expectancy with and without diabetes: life table analysis of the Framingham Heart Study. Diabetes Care 29: 38–43PubMedCrossRefGoogle Scholar
  28. 28.
    Lee DH, Lee IK, Song K et al. (2006) A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999–2002. Diabetes Care 29: 1638–1644PubMedCrossRefGoogle Scholar
  29. 29.
    Lindstrom J, Ilanne-Parikka P, Peltonen M et al. (2006) Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet 368: 1673–1679PubMedCrossRefGoogle Scholar
  30. 30.
    Lindstrom J, Peltonen M, Eriksson JG et al. (2006) High-fibre, low-fat diet predicts long-term weight loss and decreased type 2 diabetes risk: the Finnish Diabetes Prevention Study. Diabetologia 49: 912–920PubMedCrossRefGoogle Scholar
  31. 31.
    Lopez-Bermejo A, Khosravi J, Fernandez-Real JM et al. (2006) Insulin resistance is associated with increased serum concentration of IGF-binding protein-related protein 1 (IGFBP-rP1/MAC25). Diabetes 55: 2333–2339PubMedCrossRefGoogle Scholar
  32. 32.
    Lopez-Garcia E, Van Dam RM, Qi L et al. (2006) Coffee consumption and markers of inflammation and endothelial dysfunction in healthy and diabetic women. Am J Clin Nutr 84: 888–893PubMedGoogle Scholar
  33. 33.
    Lopez-Garcia E, Van Dam RM, Willett WC et al. (2006) Coffee consumption and coronary heart disease in men and women: a prospective cohort study. Circulation 113: 2045–2053PubMedCrossRefGoogle Scholar
  34. 34.
    Margareta EK, Westborg CJ, Eliasson MC (2006) A randomized trial of lifestyle intervention in primary healthcare for the modification of cardiovascular risk factors. Scand J Public Health 34: 453–461CrossRefGoogle Scholar
  35. 35.
    Meisinger C, Doring A, Thorand B et al. (2006) Association of cigarette smoking and tar and nicotine intake with development of type 2 diabetes mellitus in men and women from the general population: the MONICA/KORA Augsburg Cohort Study. Diabetologia 49: 1770–1776PubMedCrossRefGoogle Scholar
  36. 36.
    Mericq V, Ong KK, Bazaes R et al. (2005) Longitudinal changes in insulin sensitivity and secretion from birth to age three years in small- and appropriate-for-gestational-age children. Diabetologia 48: 2609–2614PubMedCrossRefGoogle Scholar
  37. 37.
    Morrato EH, Hill JO, Wyatt HR et al. (2006) Are health care professionals advising patients with diabetes or at risk for developing diabetes to exercise more? Diabetes Care 29: 543–548PubMedCrossRefGoogle Scholar
  38. 38.
    Natali A, Toschi E, Baldeweg S et al. (2006) Clustering of insulin resistance with vascular dysfunction and low-grade inflammation in type 2 diabetes. Diabetes 55: 1133–1140PubMedCrossRefGoogle Scholar
  39. 39.
    Niskanen L, Laaksonen DE, Lindstrom J et al. (2006) Serum uric acid as a harbinger of metabolic outcome in subjects with impaired glucose tolerance: the Finnish Diabetes Prevention Study. Diabetes Care 29: 709–711PubMedCrossRefGoogle Scholar
  40. 40.
    O’Gorman DJ, Karlsson HK, McQuaid S et al. (2006) Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia 49: 2983–2992CrossRefGoogle Scholar
  41. 41.
    Pereira MA, Parker ED, Folsom AR (2006) Coffee consumption and risk of type 2 diabetes mellitus: an 11-year prospective study of 28 812 postmenopausal women. Arch Intern Med 166: 1311–1316PubMedCrossRefGoogle Scholar
  42. 42.
    Qi L, Van Dam RM, Liu S et al. (2006) Whole-grain, bran, and cereal fiber intakes and markers of systemic inflammation in diabetic women. Diabetes Care 29: 207–211PubMedCrossRefGoogle Scholar
  43. 43.
    Rajpathak S, Ma J, Manson J et al. (2006) Iron intake and the risk of type 2 diabetes in women: a prospective cohort study. Diabetes Care 29: 1370–1376PubMedCrossRefGoogle Scholar
  44. 44.
    Ramachandran A, Snehalatha C, Mary S et al. (2006) The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 49: 1–9CrossRefGoogle Scholar
  45. 45.
    Ritzel RA, Butler AE, Rizza RA et al. (2006) Relationship between beta-cell mass and fasting blood glucose concentration in humans. Diabetes Care 29: 717–718PubMedCrossRefGoogle Scholar
  46. 46.
    Rosner SA, Akesson A, Stampfer MJ et al. (2007) Coffee consumption and risk of myocardial infarction among older Swedish women. Am J Epidemiol 165: 288–293PubMedCrossRefGoogle Scholar
  47. 47.
    Ruotsalainen E, Salmenniemi U, Vauhkonen I et al. (2006) Changes in inflammatory cytokines are related to impaired glucose tolerance in offspring of type 2 diabetic subjects. Diabetes Care 29: 2714–2720PubMedCrossRefGoogle Scholar
  48. 48.
    Schulz LO, Bennett PH, Ravussin E et al. (2006) Effects of traditional and western environments on prevalence of type 2 diabetes in Pima Indians in Mexico and the U.S. Diabetes Care 29: 1866–1871PubMedCrossRefGoogle Scholar
  49. 49.
    Smith AG, Russell J, Feldman EL et al. (2006) Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care 29: 1294–1299PubMedCrossRefGoogle Scholar
  50. 50.
    Snijder MB, Heine RJ, Seidell JC et al. (2006) Associations of adiponectin levels with incident impaired glucose metabolism and type 2 diabetes in older men and women: the Hoorn study. Diabetes Care 29: 2498–2503PubMedCrossRefGoogle Scholar
  51. 51.
    Snowling NJ, Hopkins WG (2006) Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care 29: 2518–2527PubMedCrossRefGoogle Scholar
  52. 52.
    Soinio M, Marniemi J, Laakso M et al. (2006) High-sensitivity C-reactive protein and coronary heart disease mortality in patients with type 2 diabetes: a 7-year follow-up study. Diabetes Care 29: 329–333PubMedCrossRefGoogle Scholar
  53. 53.
    Spranger J, Verma S, Gohring I et al. (2006) Adiponectin does not cross the blood-brain barrier but modifies cytokine expression of brain endothelial cells. Diabetes 55: 141–147PubMedCrossRefGoogle Scholar
  54. 54.
    Sriwijitkamol A, Christ-Roberts C et al. (2006) Reduced skeletal muscle inhibitor of kappaB beta content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training. Diabetes 55: 760–767PubMedCrossRefGoogle Scholar
  55. 55.
    Tuomilehto J, Lindstrom J, Eriksson JG et al. (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344: 1343–1350PubMedCrossRefGoogle Scholar
  56. 56.
    Wadsworth M, Butterworth S, Marmot M et al. (2005) Early growth and type 2 diabetes: evidence from the 1946 British birth cohort. Diabetologia 48: 2505–2510PubMedCrossRefGoogle Scholar
  57. 57.
    Walker M, Mari A, Jayapaul MK et al. (2005) Impaired beta cell glucose sensitivity and whole-body insulin sensitivity as predictors of hyperglycaemia in non-diabetic subjects. Diabetologia 48: 2470–2476PubMedCrossRefGoogle Scholar
  58. 58.
    Walker EA, Molitch M, Kramer MK et al. (2006) Adherence to preventive medications: predictors and outcomes in the Diabetes Prevention Program. Diabetes Care 29: 1997–2002PubMedCrossRefGoogle Scholar
  59. 59.
    Weickert MO, Mohlig M, Schofl C et al. (2006) Cereal fiber improves whole-body insulin sensitivity in overweight and obese women. Diabetes Care 29: 775–780PubMedCrossRefGoogle Scholar
  60. 60.
    Yaggi HK, Araujo AB, McKinlay JB (2006) Sleep duration as a risk factor for the development of type 2 diabetes. Diabetes Care 29: 657–661PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang C, Liu S, Solomon CG et al. (2006) Dietary fiber intake, dietary glycemic load, and the risk for gestational diabetes mellitus. Diabetes Care 29: 2223–2230PubMedCrossRefGoogle Scholar
  62. 62.
    Zhang C, Schulze MB, Solomon CG et al. (2006) A prospective study of dietary patterns, meat intake and the risk of gestational diabetes mellitus. Diabetologia 49: 2604–2613PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang C, Solomon CG, Manson JE et al. (2006) A prospective study of pregravid physical activity and sedentary behaviors in relation to the risk for gestational diabetes mellitus. Arch Intern Med 166: 543–548PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  1. 1.Deutsche Diabetes-Klinik, Deutsches Diabetes-ZentrumLeibniz-Institut, Heinrich-Heine-Universität DüsseldorfDüsseldorfDeutschland
  2. 2.Bad KissingenBad KissingenDeutschland

Personalised recommendations