Skip to main content
Log in

The genetic arms race between plant and Xanthomonas: lessons learned from TALE biology

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The pathogenic bacterial genus Xanthomonas infects a wide variety of host plants and causes devastating diseases in many crops. Transcription activator-like effectors (TALEs) are important virulence factors secreted by Xanthomonas with the ability to directly bind to the promoters of target genes in plant hosts and activate their expression, which often facilitates the proliferation of pathogens. Understanding how plants cope with TALEs will provide mechanistic insights into crop breeding for Xanthomonas defense. Over the past 30 years, numerous studies have revealed the modes of action of TALEs in plant cells and plant defense strategies to overcome TALE attack. Based on these findings, new technologies were adopted for disease management to optimize crop production. In this article, we will review the most recent advances in the evolutionary arms race between plant resistance and TALEs from Xanthomonas, with a specific focus on TALE applications in the development of novel breeding strategies for durable and broad-spectrum resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antony, G., Zhou, J., Huang, S., Li, T., Liu, B., White, F., and Yang, B. (2010). Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22, 3864–3876.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballvora, A., Pierre, M., van den Ackerveken, G., Schornack, S., Rossier, O., Ganal, M., Lahaye, T., and Bonas, U. (2001). Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria AvrBs4 protein. Mol Plant Microbe Interact 14, 629–638.

    CAS  PubMed  Google Scholar 

  • Bart, R., Cohn, M., Kassen, A., McCallum, E.J., Shybut, M., Petriello, A., Krasileva, K., Dahlbeck, D., Medina, C., Alicai, T., et al. (2012). High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proc Natl Acad Sci USA 109, E1972–E1979.

    CAS  PubMed  Google Scholar 

  • Bi, H., Fei, Q., Li, R., Liu, B., Xia, R., Char, S.N., Meyers, B.C., and Yang, B. (2020). Disruption of miRNA sequences by TALENs and CRISPR/Cas9 induces varied lengths of miRNA production. Plant Biotechnol J 18, 1526–1536.

    CAS  PubMed  Google Scholar 

  • Blanvillain-Baufume, S., Reschke, M., Solé, M., Auguy, F., Doucoure, H., Szurek, B., Meynard, D., Portefaix, M., Cunnac, S., Guiderdoni, E., et al. (2017). Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol J 15, 306–317.

    CAS  PubMed  Google Scholar 

  • Boch, J., and Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48, 419–436.

    CAS  PubMed  Google Scholar 

  • Boch, J., Bonas, U., and Lahaye, T. (2014). TAL effectors—pathogen strategies and plant resistance engineering. New Phytol 204, 823–832.

    CAS  PubMed  Google Scholar 

  • Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., and Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512.

    CAS  Google Scholar 

  • Bruckner, K., Schäfer, P., Weber, E., Grützner, R., Marillonnet, S., and Tissier, A. (2015). A library of synthetic transcription activator-like effector-activated promoters for coordinated orthogonal gene expression in plants. Plant J 82, 707–716.

    PubMed  PubMed Central  Google Scholar 

  • Cai, L., Cao, Y., Xu, Z., Ma, W., Zakria, M., Zou, L., Cheng, Z., and Chen, G. (2017). A transcription activator-like effector Tal7 of Xanthomonas oryzae pv. oryzicola activates rice gene Os09g29100 to suppress rice immunity. Sci Rep 7, 5089.

    PubMed  PubMed Central  Google Scholar 

  • Carpenter, S.C.D., Mishra, P., Ghoshal, C., Dash, P.K., Wang, L., Midha, S., Laha, G.S., Lore, J.S., Kositratana, W., Singh, N.K., et al. (2018). A strain of an emerging Indian Xanthomonas oryzae pv. oryzae pathotype defeats the rice bacterial blight resistance gene xa13 without inducing a clade III SWEET gene and is nearly identical to a recent Thai isolate. Front Microbiol 9, 2703.

    PubMed  PubMed Central  Google Scholar 

  • Cernadas, R.A., Doyle, E.L., Niño-Liu, D.O., Wilkins, K.E., Bancroft, T., Wang, L., Schmidt, C.L., Caldo, R., Yang, B., White, F.F., et al. (2014). Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene. PLoS Pathog 10, e1003972.

    PubMed  PubMed Central  Google Scholar 

  • Chen, L.Q., Hou, B.H., Lalonde, S., Takanaga, H., Hartung, M.L., Qu, X. Q., Guo, W.J., Kim, J.G., Underwood, W., Chaudhuri, B., et al. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu, Z., Yuan, M., Yao, J., Ge, X., Yuan, B., Xu, C., Li, X., Fu, B., Li, Z., Bennetzen, J.L., et al. (2006). Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev 20, 1250–1255.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohn, M., Bart, R.S., Shybut, M., Dahlbeck, D., Gomez, M., Morbitzer, R., Hou, B.H., Frommer, W.B., Lahaye, T., and Staskawicz, B.J. (2014). Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Mol Plant Microbe Interact 27, 1186–1198.

    PubMed  Google Scholar 

  • Cox, K.L., Meng, F., Wilkins, K.E., Li, F., Wang, P., Booher, N.J., Carpenter, S.C.D., Chen, L.Q., Zheng, H., Gao, X., et al. (2017). TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nat Commun 8, 15588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Lange, O., Wolf, C., Dietze, J., Elsaesser, J., Morbitzer, R., and Lahaye, T. (2014). Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nucleic Acids Res 42, 7436–7449.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, D., Yan, C., Pan, X., Mahfouz, M., Wang, J., Zhu, J.K., Shi, Y., and Yan, N. (2012). Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335, 720–723.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, W., Marshall, N.C., Rowland, J.L., McCoy, J.M., Worrall, L.J., Santos, A.S., Strynadka, N.C.J., and Finlay, B.B. (2017). Assembly, structure, function and regulation of type III secretion systems. Nat Rev Microbiol 15, 323–337.

    CAS  PubMed  Google Scholar 

  • Deng, Y., Liu, M., Li, X., and Li, F. (2018). MicroRNA-mediated R gene regulation: molecular scabbards for double-edged swords. Sci China Life Sci 61, 138–147.

    CAS  PubMed  Google Scholar 

  • Doyle, E.L., Booher, N.J., Standage, D.S., Voytas, D.F., Brendel, V.P., Vandyk, J.K., and Bogdanove, A.J. (2012). TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40, W117–W122.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eom, J.S., Luo, D., Atienza-Grande, G., Yang, J., Ji, C., Thi Luu, V., Huguet-Tapia, J.C., Char, S.N., Liu, B., Nguyen, H., et al. (2019). Diagnostic kit for rice blight resistance. Nat Biotechnol 37, 1372–1379.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erkes, A., Mücke, S., Reschke, M., Boch, J., and Grau, J. (2019). PrediTALE: A novel model learned from quantitative data allows for new perspectives on TALE targeting. PLoS Comput Biol 15, e1007206.

    PubMed  PubMed Central  Google Scholar 

  • Erkes, A., Reschke, M., Boch, J., and Grau, J. (2017). Evolution of transcription activator-like effectors in Xanthomonas oryzae. Genome Biol Evol 9, 1599–1615.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falahi Charkhabi, N., Booher, N.J., Peng, Z., Wang, L., Rahimian, H., Shams-Bakhsh, M., Liu, Z., Liu, S., White, F.F., and Bogdanove, A.J. (2017). Complete genome sequencing and targeted mutagenesis reveal virulence contributions of Tal2 and Tal4b of Xanthomonas translucens pv. undulosa ICMP11055 in bacterial leaf streak of wheat. Front Microbiol 8, 1488.

    PubMed  PubMed Central  Google Scholar 

  • Ferreira, R.M., de Oliveira, A.C.P., Moreira, L.M., Belasque, J., Gourbeyre, E., Siguier, P., Ferro, M.I.T., Ferro, J.A., Chandler, M., and Varani, A. M. (2015). ATALE of transposition: Tn3-like transposons play a major role in the spread of pathogenicity determinants of Xanthomonas citri and other xanthomonads. mBio 6, e02505–02514.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, X., Tsang, J.C.H., Gaba, F., Wu, D., Lu, L., and Liu, P. (2014). Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Res 42, e155.

    PubMed  PubMed Central  Google Scholar 

  • Gao, X., Yang, J., Tsang, J.C.H., Ooi, J., Wu, D., and Liu, P. (2013). Reprogramming to pluripotency using designer TALE transcription factors targeting enhancers. Stem Cell Rep 1, 183–197.

    CAS  Google Scholar 

  • Gochez, A.M., Huguet-Tapia, J.C., Minsavage, G.V., Shantaraj, D., Jalan, N., Strauß, A., Lahaye, T., Wang, N., Canteros, B.I., Jones, J.B., et al. (2018). Pacbio sequencing of copper-tolerant Xanthomonas citri reveals presence of a chimeric plasmid structure and provides insights into reassortment and shuffling of transcription activator-like effectors among X. citri strains. BMC Genomics 19, 16.

    PubMed  PubMed Central  Google Scholar 

  • Gonzalez, C., Szurek, B., Manceau, C., Mathieu, T., Séré, Y., and Verdier, V. (2007). Molecular and pathotypic characterization of new Xanthomonas oryzae strains from West Africa. Mol Plant Microbe Interact 20, 534–546.

    CAS  PubMed  Google Scholar 

  • Grau, J., Wolf, A., Reschke, M., Bonas, U., Posch, S., and Boch, J. (2013). Computational predictions provide insights into the biology of TAL effector target sites. PLoS Comput Biol 9, e1002962.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, K., Sangha, J.S., Li, Y., and Yin, Z. (2008). High-resolution genetic mapping of bacterial blight resistance gene Xa10. Theor Appl Genet 116, 155–163.

    CAS  PubMed  Google Scholar 

  • Gu, K., Tian, D., Qiu, C., and Yin, Z. (2009). Transcription activator-like type III effector AvrXa27 depends on OsTFIIAγ5 for the activation of Xa27 transcription in rice that triggers disease resistance to Xanthomonas oryzae pv. oryzae. Mol Plant Pathol 10, 829–835.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, K., Yang, B., Tian, D., Wu, L., Wang, D., Sreekala, C., Yang, F., Chu, Z., Wang, G.L., White, F.F., et al. (2005). R gene expression induced by atype-III effector triggers disease resistance in rice. Nature 435, 1122–1125.

    CAS  PubMed  Google Scholar 

  • Hoiby, T., Zhou, H., Mitsiou, D.J., and Stunnenberg, H.G. (2007). A facelift for the general transcription factor TFIIA. Biochim Biophys Acta Gene Struct Exp 1769, 429–436.

    CAS  Google Scholar 

  • Hu, Y., Zhang, J., Jia, H., Sosso, D., Li, T., Frommer, W.B., Yang, B., White, F.F., Wang, N., and Jones, J.B. (2014). Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc Natl Acad Sci USA 111, E521–E529.

    CAS  PubMed  Google Scholar 

  • Huang, R., Hui, S., Zhang, M., Li, P., Xiao, J., Li, X., Yuan, M., and Wang, S. (2017). A conserved basal transcription factor is required for the function of diverse TAL effectors in multiple plant hosts. Front Plant Sci 8, 1919.

    PubMed  PubMed Central  Google Scholar 

  • Hui, S., Liu, H., Zhang, M., Chen, D., Li, Q., Tian, J., Xiao, J., Li, X., Wang, S., and Yuan, M. (2019a). The host basal transcription factor IIA subunits coordinate for facilitating infection of TALEs-carrying bacterial pathogens in rice. Plant Sci 284, 48–56.

    CAS  PubMed  Google Scholar 

  • Hui, S., Shi, Y., Tian, J., Wang, L., Li, Y., Wang, S., and Yuan, M. (2019b). TALE-carrying bacterial pathogens trap host nuclear import receptors for facilitation of infection of rice. Mol Plant Pathol 20, 519–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutin, M., Sabot, F., Ghesquière, A., Koebnik, R., and Szurek, B. (2015). A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J 84, 694–703.

    CAS  PubMed  Google Scholar 

  • Iyer, A.S., and McCouch, S.R. (2004). The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant Microbe Interact 17, 1348–1354.

    CAS  PubMed  Google Scholar 

  • Ji, Z., Ji, C., Liu, B., Zou, L., Chen, G., and Yang, B. (2016). Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nat Commun 7, 13435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, Z., Wang, C., and Zhao, K. (2018). Rice routes of countering Xanthomonas oryzae. Int J Mol Sci 19, 3008.

    PubMed Central  Google Scholar 

  • Jiang, C.J., Imamoto, N., Matsuki, R., Yoneda, Y., and Yamamoto, N. (1998). Functional characterization of a plant importin a homologue. J Biol Chem 273, 24083–24087.

    CAS  PubMed  Google Scholar 

  • Jiang, C.J., Shoji, K., Matsuki, R., Baba, A., Inagaki, N., Ban, H., Iwasaki, T., Imamoto, N., Yoneda, Y., Deng, X.W., et al. (2001). Molecular cloning of a novel Importin a homologue from rice, by which constitutive photomorphogenic 1 (COP1) nuclear localization signal (NLS)-protein is preferentially nuclear imported. J Biol Chem 276, 9322–9329.

    CAS  PubMed  Google Scholar 

  • Jiang, G.H., Xia, Z.H., Zhou, Y.L., Wan, J., Li, D.Y., Chen, R.S., Zhai, W. X., and Zhu, L.H. (2006). Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAγ1. Mol Genet Genomics 275, 354–366.

    CAS  PubMed  Google Scholar 

  • Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., et al. (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42, 541–544.

    CAS  PubMed  Google Scholar 

  • Jones, J.D.G., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323–329.

    CAS  Google Scholar 

  • Kay, S., Hahn, S., Marois, E., Hause, G., and Bonas, U. (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318, 648–651.

    CAS  PubMed  Google Scholar 

  • Kourelis, J., and van der Hoorn, R.A.L. (2018). Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30, 285–299.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kronauer, C., Kilian, J., Strauß, T., Stahl, M., and Lahaye, T. (2019). Cell death triggered by the YUCCA-like Bs3 protein coincides with accumulation of salicylic acid and pipecolic acid but not of Indole-3-Acetic acid. Plant Physiol 180, 1647–1659.

    PubMed  PubMed Central  Google Scholar 

  • Li, C., Li, W., Zhou, Z., Chen, H., Xie, C., and Lin, Y. (2020). A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice. Plant Biotechnol J 18, 313–315.

    PubMed  Google Scholar 

  • Li, L., Atef, A., Piatek, A., Ali, Z., Piatek, M., Aouida, M., Sharakuu, A., Mahjoub, A., Wang, G., Khan, S., et al. (2013). Characterization and DNA-binding specificities of Ralstonia TAL-like effectors. Mol Plant 6, 1318–1330.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Zhang, D., Xiong, X., Yan, B., Xie, W., Sheen, J., and Li, J.F. (2017). A potent Cas9-derived gene activator for plant and mammalian cells. Nat Plants 3, 930–936.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Zou, L., Ye, G., Xiong, L., Ji, Z., Zakria, M., Hong, N., Wang, G., and Chen, G. (2014). A potential disease susceptibility gene CsLOB of citrus is targeted by a major virulence effector PthA of Xanthomonas citri subsp. citri. Mol Plant 7, 912–915.

    CAS  PubMed  Google Scholar 

  • Liu, M., Shi, Z., Zhang, X., Wang, M., Zhang, L., Zheng, K., Liu, J., Hu, X., Di, C., Qian, Q., et al. (2019). Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nat Plants 5, 389–400.

    CAS  PubMed  Google Scholar 

  • Liu, Q., Yuan, M., Zhou, Y., Li, X., Xiao, J., and Wang, S. (2011). A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ 34, 1958–1969.

    CAS  PubMed  Google Scholar 

  • Ma, W., Zou, L., Zhiyuan, J.I., Xiameng, X.U., Zhengyin, X.U., Yang, Y., Alfano, J.R., and Chen, G. (2018a). Xanthomonas oryzae pv. oryzae TALE proteins recruit OsTFIIAγ1 to compensate for the absence of OsTFIIAγ5 in bacterial blight in rice. Mol Plant Pathol 19, 2248–2262.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, L., Wang, Q., Yuan, M., Zou, T., Yin, P., and Wang, S. (2018b). Xanthomonas TAL effectors hijack host basal transcription factor IIA a and γ subunits for invasion. Biochem Biophys Res Commun 496, 608–613.

    CAS  PubMed  Google Scholar 

  • Mahfouz, M.M., Li, L., Piatek, M., Fang, X., Mansour, H., Bangarusamy, D.K., and Zhu, J.K. (2012). Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol Biol 78, 311–321.

    CAS  PubMed  Google Scholar 

  • Mahfouz, M.M., Li, L., Shamimuzzaman, M., Wibowo, A., Fang, X., and Zhu, J.K. (2011). De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 108, 2623–2628.

    CAS  PubMed  Google Scholar 

  • Mak, A.N.S., Bradley, P., Cernadas, R.A., Bogdanove, A.J., and Stoddard, B.L. (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335, 716–719.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malzahn, A., Lowder, L., and Qi, Y. (2017). Plant genome editing with TALEN and CRISPR. Cell Biosci 7, 21.

    PubMed  PubMed Central  Google Scholar 

  • Miura, K., Ikeda, M., Matsubara, A., Song, X.J., Ito, M., Asano, K., Matsuoka, M., Kitano, H., and Ashikari, M. (2010). OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42, 545–549.

    CAS  PubMed  Google Scholar 

  • Morbitzer, R., Römer, P., Boch, J., and Lahaye, T. (2010). Regulation of selected genome loci using de novo-engineered transcription activatorlike effector (TALE)-type transcription factors. Proc Natl Acad Sci USA 107, 21617–21622.

    CAS  PubMed  Google Scholar 

  • Moscou, M.J., and Bogdanove, A.J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501.

    CAS  PubMed  Google Scholar 

  • Mücke, S., Reschke, M., Erkes, A., Schwietzer, C.A., Becker, S., Streubel, J., Morgan, R.D., Wilson, G.G., Grau, J., and Boch, J. (2019). Transcriptional reprogramming of rice cells by Xanthomonas oryzae TALEs. Front Plant Sci 10, 162.

    PubMed  PubMed Central  Google Scholar 

  • Neelam, K., Mahajan, R., Gupta, V., Bhatia, D., Gill, B.K., Komal, R., Lore, J.S., Mangat, G.S., and Singh, K. (2020). High-resolution genetic mapping of a novel bacterial blight resistance gene xa-45(t) identified from Oryza glaberrima and transferred to Oryza sativa. Theor Appl Genet 133, 689–705.

    CAS  PubMed  Google Scholar 

  • Ochiai, H., Inoue, Y., Takeya, M., Sasaki, A., and Kaku, H. (2005). Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. Jpn Agr Res Q 39, 275–287.

    CAS  Google Scholar 

  • Oliva, R., Ji, C., Atienza-Grande, G., Huguet-Tapia, J.C., Perez-Quintero, A., Li, T., Eom, J.S., Li, C., Nguyen, H., Liu, B., et al. (2019). Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol 37, 1344–1350.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, Z., Hu, Y., Zhang, J., Huguet-Tapia, J.C., Block, A.K., Park, S., Sapkota, S., Liu, Z., Liu, S., and White, F.F. (2019). Xanthomonas translucens commandeers the host rate-limiting step in ABA biosynthesis for disease susceptibility. Proc Natl Acad Sci USA 116, 20938–20946.

    CAS  PubMed  Google Scholar 

  • Perez-Quintero, A.L., Lamy, L., Zarate, C.A., Cunnac, S., Doyle, E., Bogdanove, A., Szurek, B., and Dereeper, A. (2018). daTALbase: a database for genomic and transcriptomic data related to TAL effectors. Mol Plant Microbe Interact 31, 471–480.

    CAS  PubMed  Google Scholar 

  • Perez-Quintero, A.L., Rodriguez-R, L.M., Dereeper, A., López, C., Koebnik, R., Szurek, B., and Cunnac, S. (2013). An improved method for TAL effectors DNA-binding sites prediction reveals functional convergence in TAL repertoires of Xanthomonas oryzae strains. PLoS ONE 8, e68464.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Quintero, A.L., and Szurek, B. (2019). A decade decoded: spies and hackers in the history of TAL effectors research. Annu Rev Phytopathol 57, 459–481.

    CAS  PubMed  Google Scholar 

  • Quibod, I.L., Atieza-Grande, G., Oreiro, E.G., Palmos, D., Nguyen, M.H., Coronejo, S.T., Aung, E.E., Nugroho, C., Roman-Reyna, V., Burgos, M. R., et al. (2020). The Green Revolution shaped the population structure of the rice pathogen Xanthomonas oryzae pv. oryzae. ISME J 14, 492–505.

    CAS  PubMed  Google Scholar 

  • Read, A.C., Rinaldi, F.C., Hutin, M., He, Y.Q., Triplett, L.R., and Bogdanove, A.J. (2016). Suppression of Xo1-mediated disease resistance in rice by a truncated, non-DNA-binding TAL effector of Xanthomonas oryzae. Front Plant Sci 7, 1516.

    PubMed  PubMed Central  Google Scholar 

  • Roeschlin, R.A., Uviedo, F., García, L., Molina, M.C., Favaro, M.A., Chiesa, M.A., Tasselli, S., Franco-Zorrilla, J.M., Forment, J., Gadea, J., et al. (2019). PthA4AT, a 7.5-repeats transcription activator-like (TAL) effector from Xanthomonas citri ssp. citri, triggers citrus canker resistance. Mol Plant Pathol 20, 1394–1407.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers, J.M., Barrera, L.A., Reyon, D., Sander, J.D., Kellis, M., Keith Joung, J., and Bulyk, M.L. (2015). Context influences on TALE-DNA binding revealed by quantitative profiling. Nat Commun 6, 7440.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Römer, P., Hahn, S., Jordan, T., Strauss, T., Bonas, U., and Lahaye, T. (2007). Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318, 645–648.

    PubMed  Google Scholar 

  • Römer, P., Recht, S., Strauss, T., Elsaesser, J., Schornack, S., Boch, J., Wang, S., and Lahaye, T. (2010). Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol 187, 1048–1057.

    PubMed  Google Scholar 

  • Ruh, M., Briand, M., Bonneau, S., Jacques, M.A., and Chen, N.W.G. (2017). Xanthomonas adaptation to common bean is associated with horizontal transfers of genes encoding TAL effectors. BMC Genomics 18, 670.

    PubMed  PubMed Central  Google Scholar 

  • Scholze, H., and Boch, J. (2011). TAL effectors are remote controls for gene activation. Curr Opin Microbiol 14, 47–53.

    CAS  PubMed  Google Scholar 

  • Schornack, S., Ballvora, A., Gürlebeck, D., Peart, J., Baulcombe, D., Ganal, M., Baker, B., Bonas, U., and Lahaye, T. (2004). The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J 37, 46–60.

    CAS  PubMed  Google Scholar 

  • Schornack, S., Meyer, A., Römer, P., Jordan, T., and Lahaye, T. (2006). Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. J Plant Physiol 163, 256–272.

    CAS  PubMed  Google Scholar 

  • Schornack, S., Minsavage, G.V., Stall, R.E., Jones, J.B., and Lahaye, T. (2008). Characterization of AvrHah1, a novel AvrBs3-like effector from Xanthomonas gardneri with virulence and avirulence activity. New Phytol 179, 546–556.

    CAS  PubMed  Google Scholar 

  • Schornack, S., Moscou, M.J., Ward, E.R., and Horvath, D.M. (2013). Engineering plant disease resistance based on TAL effectors. Annu Rev Phytopathol 51, 383–406.

    CAS  PubMed  Google Scholar 

  • Schreiber, T., Prange, A., Hoppe, T., and Tissier, A. (2019). Split-TALE: a TALE-based two-component system for synthetic biology applications in planta. Plant Physiol 179, 1001–1012.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert, R., Dobritzsch, S., Gruber, C., Hause, G., Athmer, B., Schreiber, T., Marillonnet, S., Okabe, Y., Ezura, H., Acosta, I.F., et al. (2019). Tomato MYB21 acts in ovules to mediate jasmonate-regulated fertility. Plant Cell 31, 1043–1062.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz, A.R., Morbitzer, R., Lahaye, T., and Staskawicz, B.J. (2017). TALE-induced bHLH transcription factors that activate a pectate lyase contribute to water soaking in bacterial spot of tomato. Proc Natl Acad Sci USA 114, E897–E903.

    CAS  PubMed  Google Scholar 

  • Shan, Q., Wang, Y., Chen, K., Liang, Z., Li, J., Zhang, Y., Zhang, K., Liu, J., Voytas, D.F., Zheng, X., et al. (2013). Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant 6, 1365–1368.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shantharaj, D., Römer, P., Figueiredo, J.F.L., Minsavage, G.V., Krönauer, C., Stall, R.E., Moore, G.A., Fisher, L.C., Hu, Y., Horvath, D.M., et al. (2017). An engineered promoter driving expression of a microbial avirulence gene confers recognition of TAL effectors and reduces growth of diverse Xanthomonas strains in citrus. Mol Plant Pathol 18, 976–989.

    CAS  PubMed  Google Scholar 

  • Strauss, T., van Poecke, R.M.P., Strauss, A., Römer, P., Minsavage, G.V., Singh, S., Wolf, C., Strauss, A., Kim, S., Lee, H.A., et al. (2012). RNA-seq pinpoints a Xanthomonas TAL-effector activated resistance gene in a large-crop genome. Proc Natl Acad Sci USA 109, 19480–19485.

    CAS  PubMed  Google Scholar 

  • Streubel, J., Baum, H., Grau, J., Stuttman, J., and Boch, J. (2017). Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations. PLoS ONE 12, e0173580.

    PubMed  PubMed Central  Google Scholar 

  • Streubel, J., Pesce, C., Hutin, M., Koebnik, R., Boch, J., and Szurek, B. (2013). Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol 200, 808–819.

    CAS  PubMed  Google Scholar 

  • Sugio, A., Yang, B., Zhu, T., and White, F.F. (2007). Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIA1 and OsTFX1 during bacterial blight of rice. Proc Natl Acad Sci USA 104, 10720–10725.

    CAS  PubMed  Google Scholar 

  • Szurek, B., Marois, E., Bonas, U., and Van den Ackerveken, G. (2001). Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant J 26, 523–534.

    CAS  PubMed  Google Scholar 

  • Tang, J., Wang, Y., Yin, W., Dong, G., Sun, K., Teng, Z., Wu, X., Wang, S., Qian, Y., Pan, X., et al. (2019). Mutation of a nucleotide-binding leucine-rich repeat immune receptor-type protein disrupts immunity to bacterial blight. Plant Physiol 181, 1295–1313.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, D., Wang, J., Zeng, X., Gu, K., Qiu, C., Yang, X., Zhou, Z., Goh, M., Luo, Y., Murata-Hori, M., et al. (2014). The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell 26, 497–515.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tran, T.T., Pérez-Quintero, A.L., Wonni, I., Carpenter, S.C.D., Yu, Y., Wang, L., Leach, J.E., Verdier, V., Cunnac, S., Bogdanove, A.J., et al. (2018). Functional analysis of African Xanthomonas oryzae pv. oryzae TALomes reveals a new susceptibility gene in bacterial leaf blight of rice. PLoS Pathog 14, e1007092.

    PubMed  PubMed Central  Google Scholar 

  • Triplett, L.R., Cohen, S.P., Heffelfinger, C., Schmidt, C.L., Huerta, A.I., Tekete, C., Verdier, V., Bogdanove, A.J., and Leach, J.E. (2016). A resistance locus in the American heirloom rice variety Carolina Gold Select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola. Plant J 87, 472–483.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van den Ackerveken, G., Marois, E., and Bonas, U. (1996). Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87, 1307–1316.

    CAS  PubMed  Google Scholar 

  • Wang, C.L., Qin, T.F., Yu, H.M., Zhang, X.P., Che, J.Y., Gao, Y., Zheng, C. K., Yang, B., and Zhao, K.J. (2014a). The broad bacterial blight resistance of rice line CBB23 is triggered by a novel transcription activator-like (TAL) effector of Xanthomonas oryzae pv. oryzae. Mol Plant Pathol 15, 333–341.

    CAS  PubMed  Google Scholar 

  • Wang, C., Fan, Y., Zheng, C., Qin, T., Zhang, X., and Zhao, K. (2014b). High-resolution genetic mapping of rice bacterial blight resistance gene Xa23. Mol Genet Genomics 289, 745–753.

    CAS  PubMed  Google Scholar 

  • Wang, C., Zhang, X., Fan, Y., Gao, Y., Zhu, Q., Zheng, C., Qin, T., Li, Y., Che, J., Zhang, M., et al. (2015). XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant 8, 290–302.

    CAS  PubMed  Google Scholar 

  • Wang, J., Tian, D., Gu, K., Yang, X., Wang, L., Zeng, X., and Yin, Z. (2017a). Induction of Xa10-like genes in rice cultivar nipponbare confers disease resistance to rice bacterial blight. Mol Plant Microbe Interact 30, 466–477.

    CAS  PubMed  Google Scholar 

  • Wang, J., Zeng, X., Tian, D., Yang, X., Wang, L., and Yin, Z. (2018). The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice. Mol Plant Pathol 19, 2025–2035.

    PubMed Central  Google Scholar 

  • Wang, L., Rinaldi, F.C., Singh, P., Doyle, E.L., Dubrow, Z.E., Tran, T.T., Pérez-Quintero, A.L., Szurek, B., and Bogdanove, A.J. (2017b). TAL effectors drive transcription bidirectionally in plants. Mol Plant 10, 285–296.

    CAS  PubMed  Google Scholar 

  • Wilkins, K.E., Booher, N.J., Wang, L., and Bogdanove, A.J. (2015). TAL effectors and activation of predicted host targets distinguish Asian from African strains of the rice pathogen Xanthomonas oryzae pv. oryzicola while strict conservation suggests universal importance of five TAL effectors. Front Plant Sci 6, 536.

    PubMed  PubMed Central  Google Scholar 

  • Wu, L., Goh, M.L., Sreekala, C., and Yin, Z. (2008). XA27 depends on an amino-terminal signal-anchor-like sequence to localize to the apoplast for resistance to Xanthomonas oryzae pv oryzae. Plant Physiol 148, 1497–1509.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wyler, E., Menegatti, J., Franke, V., Kocks, C., Boltengagen, A., Hennig, T., Theil, K., Rutkowski, A., Ferrai, C., Baer, L., et al. (2017). Widespread activation of antisense transcription of the host genome during herpes simplex virus 1 infection. Genome Biol 18, 209.

    PubMed  PubMed Central  Google Scholar 

  • Xia, Y., Huang, G., and Zhu, Y. (2019). Sustainable plant disease control: biotic information flow and behavior manipulation. Sci China Life Sci 62, 1710–1713.

    CAS  PubMed  Google Scholar 

  • Xu, Z., Xu, X., Gong, Q., Li, Z., Li, Y., Wang, S., Yang, Y., Ma, W., Liu, L., Zhu, B., et al. (2019). Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Mol Plant 12, 1434–1446.

    CAS  PubMed  Google Scholar 

  • Yang, B., Sugio, A., and White, F.F. (2006). Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA 103, 10503–10508.

    CAS  PubMed  Google Scholar 

  • Yang, B., and White, F.F. (2004). Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. Mol Plant Microbe Interact 17, 1192–1200.

    CAS  PubMed  Google Scholar 

  • Yoshimura, S., Yamanouchi, U., Katayose, Y., Toki, S., Wang, Z.X., Kono, I., Kurata, N., Yano, M., Iwata, N., and Sasaki, T. (1998). Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA 95, 1663–1668.

    CAS  PubMed  Google Scholar 

  • Yoshimura, S., Yoshimura, A., Iwata, N., McCouch, S.R., Abenes, M.L., Baraoidan, M.R., Mew, T.W., and Nelson, R.J. (1995). Tagging and combining bacterial blight resistance genes in rice using rapd and rflp markers. Mol Breeding 1, 375–387.

    CAS  Google Scholar 

  • Yu, Y., Streubel, J., Balzergue, S., Champion, A., Boch, J., Koebnik, R., Feng, J., Verdier, V., and Szurek, B. (2011). Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene. Mol Plant Microbe Interact 24, 1102–1113.

    CAS  PubMed  Google Scholar 

  • Yu, Y., Zhang, Y., Chen, X., and Chen, Y. (2019). Plant noncoding RNAs: hidden players in development and stress responses. Annu Rev Cell Dev Biol 35, 407–431.

    CAS  PubMed  Google Scholar 

  • Yu, Y., Zhou, Y.F., Feng, Y.Z., He, H., Lian, J.P., Yang, Y.W., Lei, M.Q., Zhang, Y.C., and Chen, Y.Q. (2020). Transcriptional landscape of pathogen-responsive lncRNAs in rice unveils the role of ALEX 1 in jasmonate pathway and disease resistance. Plant Biotechnol J 18, 679–690.

    CAS  PubMed  Google Scholar 

  • Yu, Y., Zhou, Y., Zhang, Y., and Chen, Y. (2018). Grass phasiRNAs and male fertility. Sci China Life Sci 61, 148–154.

    CAS  PubMed  Google Scholar 

  • Yuan, M., Chu, Z., Li, X., Xu, C., and Wang, S. (2010). The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22, 3164–3176.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, M., Ke, Y., Huang, R., Ma, L., Yang, Z., Chu, Z., Xiao, J., Li, X., and Wang, S. (2016). A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. eLife 5, e19605.

    PubMed  PubMed Central  Google Scholar 

  • Zeng, X., Tian, D., Gu, K., Zhou, Z., Yang, X., Luo, Y., White, F.F., and Yin, Z. (2015). Genetic engineering of the Xa10 promoter for broad-spectrum and durable resistance to Xanthomonas oryzae pv. oryzae. Plant Biotechnol J 13, 993–1001.

    CAS  PubMed  Google Scholar 

  • Zhang, J., Yin, Z., and White, F. (2015a). TAL effectors and the executor R genes. Front Plant Sci 6, 641.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, F., Huang, L., Zhang, F., Hu, D., Wu, W., Wang, W., Ali, J., Vera Cruz, C., Zhou, Y., and Li, Z. (2015b). Interacting transcriptomes revealing molecular mechanisms underlying Xa39 mediated broad spectrum resistance of rice to bacterial blight. Plant Genome 8, plantgenome2014.12.0094.

  • Zhang, L., Yu, H., Ma, B., Liu, G., Wang, J., Wang, J., Gao, R., Li, J., Liu, J., Xu, J., et al. (2017). A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat Commun 8, 14789.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., Peng, Z., Long, J., Sosso, D., Liu, B., Eom, J.S., Huang, S., Liu, S., Vera Cruz, C., Frommer, W.B., et al. (2015). Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82, 632–643.

    CAS  PubMed  Google Scholar 

  • Zuluaga, P., Szurek, B., Koebnik, R., Kroj, T., and Morel, J.B. (2017). Effector mimics and integrated decoys, the never-ending arms race between rice and Xanthomonas oryzae. Front Plant Sci 8, 431.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Key R&D Program of China (2017YFD0100102), the National Natural Science Foundation of China (31471175), Natural Science Foundation of Guangdong Province, China (2017A030313183), Science and Technology Program of Guangdong Province, China (2017A070702006, 2017B020201003), Modern Agricultural Industry Technology System of Guangdong Province, China (2019KJ105), Joint Research on High Quality Rice Varieties (Yuecainong [2019]73), Special Fund for Science and Technology Innovation Strategy (Construction of High-level Academy of Agricultural Sciences) (Foundation of President of Guangdong Academy of Agricultural Sciences in China, BZ201909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuying He.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Lu, Z., Liu, W. et al. The genetic arms race between plant and Xanthomonas: lessons learned from TALE biology. Sci. China Life Sci. 64, 51–65 (2021). https://doi.org/10.1007/s11427-020-1699-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1699-4

Keywords

Navigation