Science China Life Sciences

, Volume 62, Issue 9, pp 1250–1252 | Cite as

Genetic mining of the “dark matter” in fungal natural products

  • Wei Li
  • Wen-Bing YinEmail author


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development Program of China (2018YFD0400200), the National Natural Science Foundation of China (31861133004), and the Biological Resources Program, Chinese Academy of Sciences (KFJ-BRP-009). We thank Mrs. Jie Fan (University of Marburg) for critically reading and discussing the manuscript.

Compliance and ethics The author(s) declare that they have no conflict of interest.


  1. Bai, T., Quan, Z., Zhai, R., Awakawa, T., Matsuda, Y., and Abe, I. (2018). Elucidation and heterologous reconstitution of chrodrimanin B biosynthesis. Org Lett 20, 7504–7508.CrossRefPubMedGoogle Scholar
  2. Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S.Y., Medema, M.H., and Weber, T. (2019). antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47, W81–W87.CrossRefGoogle Scholar
  3. Chiang, Y.M., Ahuja, M., Oakley, C.E., Entwistle, R., Asokan, A., Zutz, C., Wang, C.C.C., and Oakley, B.R. (2016). Development of Genetic Dereplication Strains in Aspergillus nidulans Results in the Discovery of Aspercryptin. Angew Chem Int Ed 55, 1662–1665.CrossRefGoogle Scholar
  4. Clevenger, K.D., Bok, J.W., Ye, R., Miley, G.P., Verdan, M.H., Velk, T., Chen, C., Yang, K.H., Robey, M.T., Gao, P., et al. (2017). A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat Chem Biol 13, 895–901.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dohn, J.W., Grubbs, A.W., Oakley, C.E., and Oakley, B.R. (2018). New multi-marker strains and complementing genes for Aspergillus nidulans molecular biology. Fungal Genets Biol 111, 1–6.CrossRefGoogle Scholar
  6. Fan, J., Liao, G., Kindinger, F., Ludwig-Radtke, L., Yin, W.B., and Li, S.M. (2019). Peniphenone and Penilactone Formation in Penicillium crustosum via 1,4-Michael Additions of ortho-Quinone Methide from Hydroxyclavatol to γ-Butyrolactones from Crustosic Acid. J Am Chem Soc 141, 4225–4229.CrossRefPubMedGoogle Scholar
  7. Guan, F., Pan, Y., Li, J., and Liu, G. (2017). A GATA-type transcription factor AcAREB for nitrogen metabolism is involved in regulation of cephalosporin biosynthesis in Acremonium chrysogenum. Sci China Life Sci 60, 958–967.CrossRefPubMedGoogle Scholar
  8. Hai, Y., Huang, A.M., and Tang, Y. (2019). Structure-guided function discovery of an NRPS-like glycine betaine reductase for choline biosynthesis in fungi. Proc Natl Acad Sci USA 116, 10348–10353.CrossRefPubMedGoogle Scholar
  9. Harvey, C.J.B., Tang, M., Schlecht, U., Horecka, J., Fischer, C.R., Lin, H. C., Li, J., Naughton, B., Cherry, J., Miranda, M., et al. (2018). HEx: A heterologous expression platform for the discovery of fungal natural products. Sci Adv 4, eaar5459.CrossRefPubMedPubMedCentralGoogle Scholar
  10. He, Y., Wang, B., Chen, W., Cox, R.J., He, J., and Chen, F. (2018). Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp.. Biotech Adv 36, 739–783.CrossRefGoogle Scholar
  11. Itoh, H., Matsui, M., Miyamura, Y., Takeda, I., Ishii, J., Kumagai, T., Machida, M., Shibata, T., and Arita, M. (2018). Biosynthesis of Novel Statins by Combining Heterologous Genes from Xylaria and Aspergillus. ACS Synth Biol 7, 2783–2789.CrossRefPubMedGoogle Scholar
  12. Jiang, W., Zhao, X., Gabrieli, T., Lou, C., Ebenstein, Y., and Zhu, T.F. (2015). Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nat Commun 6, 8101.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kang, H.S., Charlop-Powers, Z., and Brady, S.F. (2016). Multiplexed CRISPR/Cas9- and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in Yeast. ACS Synth Biol 5, 1002–1010.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Keller, N.P. (2019). Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol 17, 167–180.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Li, R., Li, Z.X., Ma, K., Wang, G., Li, W., Liu, H.W., Yin, W.B., Zhang, P., and Liu, X.Z. (2019a). Strategy for efficient cloning of biosynthetic gene clusters from fungi. Sci China Life Sci 11.Google Scholar
  16. Li, W., Fan, A., Wang, L., Zhang, P., Liu, Z., An, Z., and Yin, W.B. (2018). Asperphenamate biosynthesis reveals a novel two-module NRPS system to synthesize amino acid esters in fungi. Chem Sci 9, 2589–2594.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Li, W., Yu, J., Li, Z., and Yin, W.B. (2019b). Rational design for fungal laccase production in the model host Aspergillus nidulans. Sci China Life Sci 62, 84–94.CrossRefPubMedGoogle Scholar
  18. Li, Y., and Tan, H. (2017). Biosynthesis and molecular regulation of secondary metabolites in microorganisms. Sci China Life Sci 60, 935–938.CrossRefPubMedGoogle Scholar
  19. Lyu, H.N., Liu, H.W., Keller, N.P., and Yin, W.B. (2019). Harnessing diverse transcriptional regulators for natural product discovery in fungi. Nat Prod Rep 75.Google Scholar
  20. Macheleidt, J., Mattern, D.J., Fischer, J., Netzker, T., Weber, J., Schroeckh, V., Valiante, V., and Brakhage, A.A. (2016). Regulation and role of fungal secondary metabolites. Annu Rev Genet 50, 371–392.CrossRefPubMedGoogle Scholar
  21. Pfannenstiel B.T., Keller N.P. (2019). On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv S0734-9750(19)30012-6.Google Scholar
  22. Qin, B., Matsuda, Y., Mori, T., Okada, M., Quan, Z., Mitsuhashi, T., Wakimoto, T., and Abe, I. (2016). An unusual chimeric diterpene synthase from Emericella variecolor and its functional conversion into a sesterterpene synthase by domain swapping. Angew Chem Int Ed 55, 1658–1661.CrossRefGoogle Scholar
  23. Skellam, E. (2019). Strategies for engineering natural product biosynthesis in fungi. Trends Biotech 37, 416–427.CrossRefGoogle Scholar
  24. van Dijk, J.W.A., Guo, C.J., and Wang, C.C.C. (2016). Engineering fungal nonribosomal peptide synthetase-like enzymes by heterologous expression and domain swapping. Org Lett 18, 6236–6239.CrossRefPubMedGoogle Scholar
  25. Wang, C., Hantke, V., Cox, R.J., and Skellam, E. (2019). Targeted gene inactivations expose silent cytochalasans in Magnaporthe grisea NI980. Org Lett 21, 4163–4167.CrossRefPubMedGoogle Scholar
  26. Zhang, J.J., Tang, X., and Moore, B.S. (2019). Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 71.Google Scholar
  27. Zhang, X., Lu, C., and Bai, L. (2017). Conversion of the high-yield salinomycin producer Streptomyces albus BK3-25 into a surrogate host for polyketide production. Sci China Life Sci 60, 1000–1009.CrossRefPubMedGoogle Scholar
  28. Zheng, Y., Wang, X., Zhang, X., Li, W., Liu, G., Wang, S., Yan, X., Zou, H., and Yin, W.B. (2017). COP9 signalosome subunit PfCsnE regulates secondary metabolism and conidial formation in Pestalotiopsis fici. Sci China Life Sci 60, 656–664.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  2. 2.Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations