Advertisement

Science China Life Sciences

, Volume 62, Issue 11, pp 1492–1505 | Cite as

Overexpression of the diguanylate cyclase CdgD blocks developmental transitions and antibiotic biosynthesis in Streptomyces coelicolor

  • Xiaocao Liu
  • Guosong Zheng
  • Gang Wang
  • Weihong Jiang
  • Lei LiEmail author
  • Yinhua LuEmail author
Research Paper

Abstract

Cyclic dimeric GMP (c-di-GMP) has emerged as the nucleotide second messenger regulating both development and antibiotic production in high-GC, Gram-positive streptomycetes. Here, a diguanylate cyclase (DGC), CdgD, encoded by SCO5345 from the model strain Streptomyces coelicolor, was functionally identified and characterized to be involved in c-di-GMP synthesis through genetic and biochemical analysis. cdgD overexpression resulted in significantly reduced production of actinorhodin and undecylprodigiosin, as well as completely blocked sporulation or aerial mycelium formation on two different solid media. In the cdgD-overexpression strain, intracellular c-di-GMP levels were 13-27-fold higher than those in the wild-type strain. In vitro enzymatic assay demonstrated that CdgD acts as a DGC, which could efficiently catalyze the synthesis of c-di-GMP from two GTP molecules. Heterologous overproduction of cdgD in two industrial Streptomyces strains could similarly impair developmental transitions as well as antibiotic biosynthesis. Collectively, our results combined with previously reported data clearly demonstrated that c-di-GMP-mediated signalling pathway plays a central and universal role in the life cycle as well as secondary metabolism in streptomycetes.

Keywords

Streptomyces c-di-GMP diguanylate cyclase CdgD morphological differentiation antibiotic biosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31630003, 31570072 and 31770088), the Science and Technology Commission of Shanghai Municipality (18ZR1446700) and the National Science and Technology Major Project (2017ZX09101003-006-012). We are grateful to Yuanhong Shan, Wenli Hu and Wenzhi Zhou for LC-MS/MS analysis. We also thank Zhiping Zhang and Jiqin Li for field emission scanning electron microscopy (FESEM) analysis.

Supplementary material

11427_2019_9549_MOESM1_ESM.doc (15 mb)
Overexpression of the diguanylate cyclase CdgD blocks developmental transitions and antibiotic biosynthesis in Streptomyces coelicolor

References

  1. Al-Bassam, M.M., Haist, J., Neumann, S.A., Lindenberg, S., and Tschowri, N. (2018). Expression patterns, genomic conservation and input into developmental regulation of the GGDEF/EAL/HD-GYP domain proteins in Streptomyces. Front Microbiol 9, 2524.CrossRefGoogle Scholar
  2. Barka, E.A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Meier-Kolthoff, J.P., Klenk, H.P., Clément, C., Ouhdouch, Y., and van Wezel, G.P. (2016). Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 80, 1–43.CrossRefGoogle Scholar
  3. Bentley, S.D., Chater, K.F., Cerdeño-Tárraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser, H., Harper, D., et al. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147.CrossRefGoogle Scholar
  4. Bush, M.J., Tschowri, N., Schlimpert, S., Flärdh, K., and Buttner, M.J. (2015). c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. Nat Rev Microbiol 13, 749–760.CrossRefGoogle Scholar
  5. Chng, C., Lum, A.M., Vroom, J.A., and Kao, C.M. (2008). A key developmental regulator controls the synthesis of the antibiotic erythromycin in Saccharopolyspora erythraea. Proc Natl Acad Sci USA 105, 11346–11351.CrossRefGoogle Scholar
  6. Christen, B., Christen, M., Paul, R., Schmid, F., Folcher, M., Jenoe, P., Meuwly, M., and Jenal, U. (2006). Allosteric control of cyclic di-GMP signaling. J Biol Chem 281, 32015–32024.CrossRefGoogle Scholar
  7. Den Hengst, C.D., Tran, N.T., Bibb, M.J., Chandra, G., Leskiw, B.K., and Buttner, M.J. (2010). Genes essential for morphological development and antibiotic production in Streptomyces coelicolor are targets of BldD during vegetative growth. Mol Microbiol 78, 361–379.CrossRefGoogle Scholar
  8. Elliot, M.A., Bibb, M.J., Buttner, M.J., and Leskiw, B.K. (2001). BldD is a direct regulator of key developmental genes in Streptomyces coelicolor A3(2). Mol Microbiol 40, 257–269.CrossRefGoogle Scholar
  9. Guan, F., Pan, Y., Li, J., and Liu, G. (2017). A GATA-type transcription factor AcAREB for nitrogen metabolism is involved in regulation of cephalosporin biosynthesis in Acremonium chrysogenum. Sci China Life Sci 60, 958–967.CrossRefGoogle Scholar
  10. Hackl, S., and Bechthold, A. (2015). The gene bldA, a regulator of morphological differentiation and antibiotic production in Streptomyces. Arch Pharm Chem Life Sci 348, 455–462.CrossRefGoogle Scholar
  11. Hengge, R. (2009). Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7, 263–273.CrossRefGoogle Scholar
  12. Higo, A., Hara, H., Horinouchi, S., and Ohnishi, Y. (2012). Genome-wide distribution of AdpA, a global regulator for secondary metabolism and morphological differentiation in Streptomyces, revealed the extent and complexity of the AdpA regulatory network. DNA Res 19, 259–274.CrossRefGoogle Scholar
  13. Higo, A., Horinouchi, S., and Ohnishi, Y. (2011). Strict regulation of morphological differentiation and secondary metabolism by a positive feedback loop between two global regulators AdpA and BldA in Streptomyces griseus. Mol Microbiol 81, 1607–1622.CrossRefGoogle Scholar
  14. Huang, H., Zheng, G., Jiang, W., Hu, H., and Lu, Y. (2015). One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin 47, 231–243.CrossRefGoogle Scholar
  15. Hull, T.D., Ryu, M.H., Sullivan, M.J., Johnson, R.C., Klena, N.T., Geiger, R.M., Gomelsky, M., and Bennett, J.A. (2012). Cyclic Di-GMP phosphodiesterases RmdA and RmdB are involved in regulating colony morphology and development in Streptomyces coelicolor. J Bacteriol 194, 4642–4651.CrossRefGoogle Scholar
  16. Jenal, U., Reinders, A., and Lori, C. (2017). Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15, 271–284.CrossRefGoogle Scholar
  17. Jones, S.E., and Elliot, M.A. (2018). ‘Exploring’ the regulation of Streptomyces growth and development. Curr Opin Microbiol 42, 25–30.CrossRefGoogle Scholar
  18. Kieser, T., Bibb, M.J., Butter, M.J., Chater, K.F., and Hopwood, D.A. (2000). Practical Streptomyces genetics. The John Innes Foundation, Norwich, United Kingdom.Google Scholar
  19. Li, L., Wei, K., Zheng, G., Liu, X., Chen, S., Jiang, W., and Lu, Y. (2018). CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl Environ Microbiol 84.Google Scholar
  20. Li, L., Zhao, Y., Ruan, L., Yang, S., Ge, M., Jiang, W., and Lu, Y. (2015). A stepwise increase in pristinamycin II biosynthesis by Streptomyces pristinaespiralis through combinatorial metabolic engineering. Metab Eng 29, 12–25.CrossRefGoogle Scholar
  21. Liu, G., Chater, K.F., Chandra, G., Niu, G., and Tan, H. (2013). Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77, 112–143.CrossRefGoogle Scholar
  22. Liu, P., Zhu, H., Zheng, G., Jiang, W., and Lu, Y. (2017). Metabolic engineering of Streptomyces coelicolor for enhanced prodigiosins (RED) production. Sci China Life Sci 60, 948–957.CrossRefGoogle Scholar
  23. Li, Y., and Tan, H. (2017). Biosynthesis and molecular regulation of secondary metabolites in microorganisms. Sci China Life Sci 60, 935–938.CrossRefGoogle Scholar
  24. Meng, X., Wang, W., Xie, Z., Li, P., Li, Y., Guo, Z., Lu, Y., Yang, J., Guan, K., Lu, Z., et al. (2017). Neomycin biosynthesis is regulated positively by AfsA-g and NeoR in Streptomyces fradiae CGMCC 4.7387. Sci China Life Sci 60, 980–991.CrossRefGoogle Scholar
  25. Mouri, Y., Konishi, K., Fujita, A., Tezuka, T., and Ohnishi, Y. (2017). Regulation of sporangium formation by BldD in the rare actinomycete Actinoplanes missouriensis. J Bacteriol 199, e00840–16.CrossRefGoogle Scholar
  26. Nepal, K.K., and Wang, G. (2019). Streptomycetes: surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotech Adv 37, 1–20.CrossRefGoogle Scholar
  27. Paul, R., Weiser, S., Amiot, N.C., Chan, C., Schirmer, T., Giese, B., and Jenal, U. (2004). Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18, 715–727.CrossRefGoogle Scholar
  28. Rodríguez, H., Rico, S., Díaz, M., and Santamaría, R.I. (2013). Two-component systems in Streptomyces: key regulators of antibiotic complex pathways. Microb Cell Fact 12, 127.CrossRefGoogle Scholar
  29. Romling, U., Galperin, M.Y., and Gomelsky, M. (2013). Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77, 1–52.CrossRefGoogle Scholar
  30. Ryjenkov, D.A., Tarutina, M., Moskvin, O.V., and Gomelsky, M. (2005). Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187, 1792–1798.CrossRefGoogle Scholar
  31. Schirmer, T., and Jenal, U. (2009). Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7, 724–735.CrossRefGoogle Scholar
  32. Schmidt, A.J., Ryjenkov, D.A., and Gomelsky, M. (2005). The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187, 4774–4781.CrossRefGoogle Scholar
  33. Schumacher, M.A., Zeng, W., Findlay, K.C., Buttner, M.J., Brennan, R.G., and Tschowri, N. (2017). The Streptomyces master regulator BldD binds c-di-GMP sequentially to create a functional BldD2-(c-di-GMP)4 complex. Nucleic Acids Res 45, 6923–6933.CrossRefGoogle Scholar
  34. Tamayo, R., Pratt, J.T., and Camilli, A. (2007). Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61, 131–148.CrossRefGoogle Scholar
  35. Tran, N.T., Den Hengst, C.D., Gomez-Escribano, J.P., and Buttner, M.J. (2011). Identification and characterization of CdgB, a diguanylate cyclase involved in developmental processes in Streptomyces coelicolor. J Bacteriol 193, 3100–3108.CrossRefGoogle Scholar
  36. Tschowri, N. (2016). Cyclic dinucleotide-controlled regulatory pathways in Streptomyces species. J Bacteriol 198, 47–54.CrossRefGoogle Scholar
  37. Tschowri, N., Schumacher, M.A., Schlimpert, S., Chinnam, N.B., Findlay, K.C., Brennan, R.G., and Buttner, M.J. (2014). Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell 158, 1136–1147.CrossRefGoogle Scholar
  38. van Wezel, G.P., and McDowall, K.J. (2011). The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28, 1311–1333.CrossRefGoogle Scholar
  39. Wang, R., Mast, Y., Wang, J., Zhang, W., Zhao, G., Wohlleben, W., Lu, Y., and Jiang, W. (2013). Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor. Mol Microbiol 87, 30–48.CrossRefGoogle Scholar
  40. Xu, Z., You, D., Tang, L.Y., Zhou, Y., and Ye, B.C. (2019). Metabolic engineering strategies based on secondary messengers (p)ppGpp and C-di-GMP to increase erythromycin yield in Saccharopolyspora erythraea. ACS Synth Biol 8, 332–345.CrossRefGoogle Scholar
  41. Yu, Z., Zhu, H., Dang, F., Zhang, W., Qin, Z., Yang, S., Tan, H., Lu, Y., and Jiang, W. (2012). Differential regulation of antibiotic biosynthesis by DraR-K, a novel two-component system in Streptomyces coelicolor. Mol Microbiol 85, 535–556.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
  2. 2.School of Life SciencesHenan UniversityKaifengChina
  3. 3.Jiangsu National Synergetic Innovation Center for Advanced MaterialsSICAMNanjingChina
  4. 4.School of Life SciencesShanghai Normal UniversityShanghaiChina

Personalised recommendations