Science China Life Sciences

, Volume 62, Issue 4, pp 594–608 | Cite as

Topological evolution of coexpression networks by new gene integration maintains the hierarchical and modular structures in human ancestors

  • Jian ZuEmail author
  • Yuexi Gu
  • Yu Li
  • Chentong Li
  • Wenyu Zhang
  • Yong E. Zhang
  • UnJin Lee
  • Li Zhang
  • Manyuan LongEmail author
Research Paper


We analyze the global structure and evolution of human gene coexpression networks driven by new gene integration. When the Pearson correlation coefficient is greater than or equal to 0.5, we find that the coexpression network consists of 334 small components and one “giant” connected subnet comprising of 6317 interacting genes. This network shows the properties of power-law degree distribution and small-world. The average clustering coefficient of younger genes is larger than that of the elderly genes (0.6685 vs. 0.5762). Particularly, we find that the younger genes with a larger degree also show a property of hierarchical architecture. The younger genes play an important role in the overall pivotability of the network and this network contains few redundant duplicate genes. Moreover, we find that gene duplication and orphan genes are two dominant evolutionary forces in shaping this network. Both the duplicate genes and orphan genes develop new links through a “rich-gets-richer” mechanism. With the gradual integration of new genes into the ancestral network, most of the topological structure features of the network would gradually increase. However, the exponent of degree distribution and modularity coefficient of the whole network do not change significantly, which implies that the evolution of coexpression networks maintains the hierarchical and modular structures in human ancestors.


Network biology gene network evolution scale-free network natural selection gene expression self-organization gene duplication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Profs. Yicang Zhou and Yanni Xiao for their valuable discussion. This work was supported by grants from the National Natural Science Foundation of China (11571272, 11201368 and 11631012), the National Science and Technology Major Project of China (2012ZX10002001), the Natural Science Foundation of Shaanxi Province (2015JQ1011) and the China Postdoctoral Science Foundation (2014M560755).

Supplementary material

11427_2019_9483_MOESM1_ESM.xlsx (3.5 mb)
Supplementary material, approximately 3.53 MB.
11427_2019_9483_MOESM2_ESM.xlsx (499 kb)
Supplementary material, approximately 498 KB.
11427_2019_9483_MOESM3_ESM.xlsx (75 kb)
Supplementary material, approximately 75.3 KB.


  1. Albert, R., Jeong, H., and Barabási, A.L. (2000). Error and attack tolerance of complex networks. Nature 406, 378–382.CrossRefGoogle Scholar
  2. Barkai, N., and Leibler, S. (1997). Robustness in simple biochemical networks. Nature 387, 913–917.CrossRefGoogle Scholar
  3. Barabási, A.L., and Albert, R. (1999). Emergence of scaling in random networks. Science 286, 509–512.CrossRefGoogle Scholar
  4. Barabási, A.L., and Oltvai, Z.N. (2004). Network biology: understanding the cell’s functional organization. Nat Rev Genet 5, 101–113.CrossRefGoogle Scholar
  5. Chung, F., Lu, L., Dewey, T.G., and Galas, D.J. (2003). Duplication models for biological networks. J Comput Biol 10, 677–687.CrossRefGoogle Scholar
  6. Cohen, R., and Havlin, S. (2003). Scale-free networks are ultrasmall. Phys Rev Lett 90, 058701.CrossRefGoogle Scholar
  7. Clauset, A., Newman, M.E.J., and Moore, C. (2004). Finding community structure in very large networks. Phys Rev E 70, 066111.CrossRefGoogle Scholar
  8. Chung, W.Y., Albert, R., Albert, I., Nekrutenko, A., and Makova, K.D. (2006). Rapid and asymmetric divergence of duplicate genes in the human gene coexpression network. BMC Bioinformatics 7, 46, 1–14.Google Scholar
  9. Crombach, A., and Hogeweg, P. (2008). Evolution of evolvability in gene regulatory networks. PLoS Comput Biol 4, e1000112.CrossRefGoogle Scholar
  10. Chen, S., Krinsky, B.H., and Long, M. (2013). New genes as drivers of phenotypic evolution. Nat Rev Genet 14, 645–660.CrossRefGoogle Scholar
  11. Girvan, M., and Newman, M.E.J. (2002). Community structure in social and biological networks. Proc Natl Acad Sci USA 99, 7821–7826.CrossRefGoogle Scholar
  12. Horvath, S., and Dong, J. (2008). Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol 4, e1000117.CrossRefGoogle Scholar
  13. Hedges, S.B., Marin, J., Suleski, M., Paymer, M., and Kumar, S. (2015). Tree of life reveals clock-like speciation and diversification. Mol Biol Evol 32, 835–845.CrossRefGoogle Scholar
  14. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., and Barabási, A.L. (2000). The large-scale organization of metabolic networks. Nature 407, 651–654.CrossRefGoogle Scholar
  15. Jordan, I.K., Marino-Ramirez, L., Wolf, Y.I., and Koonin, E.V. (2004). Conservation and coevolution in the scale-free human gene coexpression network. Mol Biol Evol 21, 2058–2070.CrossRefGoogle Scholar
  16. Lee, H.K., Hsu, A.K., Sajdak, J., Qin, J., and Pavlidis, P. (2004). Coexpression analysis of human genes across many microarray data sets. Genome Res 14, 1085–1094.CrossRefGoogle Scholar
  17. Li, M., Li, Q., Ganegoda, G.U., Wang, J.X., Wu, F.X., and Pan, Y. (2014). Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks. Sci China Life Sci 57, 1064–1071.CrossRefGoogle Scholar
  18. Maslov, S., and Sneppen, K. (2002). Specificity and stability in topology of protein networks. Science 296, 910–913.CrossRefGoogle Scholar
  19. Oldham, M.C., Horvath, S., and Geschwind, D.H. (2006). Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci USA 103, 17973–17978.CrossRefGoogle Scholar
  20. Obayashi, T., Okamura, Y., Ito, S., Tadaka, S., Motoike, I.N., and Kinoshita, K. (2012). COXPRESdb: a database of comparative gene coexpression networks of eleven species for mammals. Nucleic Acids Res 41, D1014–D1020.CrossRefGoogle Scholar
  21. Pastor-Satorras, R., Smith, E., and Solé, R.V. (2003). Evolving protein interaction networks through gene duplication. J Theor Biol 222, 199–210.CrossRefGoogle Scholar
  22. Prieto, C., Risueño, A., Fontanillo, C., and De las Rivas, J. (2008). Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. PLoS ONE 3, e3911.CrossRefGoogle Scholar
  23. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., and Barabási, A.L. (2002). Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555.CrossRefGoogle Scholar
  24. Shen-Orr, S.S., Milo, R., Mangan, S., and Alon, U. (2002). Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31, 64–68.CrossRefGoogle Scholar
  25. Sorrells, T.R., and Johnson, A.D. (2015). Making sense of transcription networks. Cell 161, 714–723.CrossRefGoogle Scholar
  26. Tautz, D., and Domazet-Lošo, T. (2011). The evolutionary origin of orphan genes. Nat Rev Genet 12, 692–702.CrossRefGoogle Scholar
  27. Watts, D.J., and Strogatz, S.H. (1998). Collective dynamics of ‘small-world’ networks. Nature 393, 440–442.CrossRefGoogle Scholar
  28. Wagner, A. (2001). The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol Biol Evol 18, 1283–1292.CrossRefGoogle Scholar
  29. Wagner, A. (2003). How the global structure of protein interaction networks evolves. Proc R Soc London Ser B-Biol Sci 270, 457–466.CrossRefGoogle Scholar
  30. Yu, H., Mitra, R., Yang, J., Li, Y.Y., and Zhao, Z.M. (2014). Algorithms for network-based identification of differential regulators from transcriptome data: a systematic evaluation. Sci China Life Sci 57, 1090–1102.CrossRefGoogle Scholar
  31. Zhang, Y.F., Zhang, R., and Su, B. (2009). Diversity and evolution of microRNA gene clusters. Sci China Ser C-Life Sci 52, 261–266.CrossRefGoogle Scholar
  32. Zhang, Y.E., Vibranovski, M.D., Landback, P., Marais, G.A.B., and Long, M. (2010). Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on the X chromosome. PLoS Biol 8, e1000494.CrossRefGoogle Scholar
  33. Zhang, Y.E., Landback, P., Vibranovski, M.D., and Long, M. (2011). Accelerated recruitment of new brain development genes into the human genome. PLoS Biol 9, e1001179.CrossRefGoogle Scholar
  34. Zhang, W., Landback, P., Gschwend, A.R., Shen, B., and Long, M. (2015). New genes drive the evolution of gene interaction networks in the human and mouse genomes. Genome Biol 16, 202.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jian Zu
    • 1
    • 2
    Email author
  • Yuexi Gu
    • 1
  • Yu Li
    • 1
  • Chentong Li
    • 1
  • Wenyu Zhang
    • 3
  • Yong E. Zhang
    • 4
  • UnJin Lee
    • 2
  • Li Zhang
    • 2
  • Manyuan Long
    • 2
    Email author
  1. 1.School of Mathematics and StatisticsXi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Ecology and EvolutionThe University of ChicagoChicagoUSA
  3. 3.Center for Systems BiologySoochow UniversitySuzhouChina
  4. 4.State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina

Personalised recommendations