Advertisement

Science China Life Sciences

, Volume 62, Issue 4, pp 566–578 | Cite as

Comparative study on pattern recognition receptors in non-teleost ray-finned fishes and their evolutionary significance in primitive vertebrates

  • Yuming He
  • Hailin Pan
  • Guojie ZhangEmail author
  • Shunping HeEmail author
Research Paper

Abstract

Pattern recognition receptors (PRRs) play important roles in innate immunity system and trigger the specific pathogen recognition by detecting the pathogen-associated molecular patterns. The main four PRRs components including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs) and C-type lectin receptors (CLRs) were surveyed in the five genomes of non-teleost ray-finned fishes (NTR) including bichir (Polypterus senegalus), American paddlefish (Polyodon spathula), alligator gar (Atractosteus spatula), spotted gar (Lepisosteus oculatus) and bowfin (Amia calva), representing all the four major basal groups of ray-finned fishes. The result indicates that all the four PRRs components have been well established in these NTR fishes. In the RLR-MAVS signal pathway, which detects intracellular RNA ligands to induce production of type I interferons (IFNs), the MAVS was lost in bichir particularly. Also, the essential genes of recognition of Lipopolysaccharide (LPS) commonly in mammals like MD2, LY96 and LBP could not be identified in NTR fishes. It is speculated that TLR4 in NTR fishes may act as a cooperator with other PRRs and has a different pathway of recognizing LPS compared with that in mammals. In addition, we provide a survey of NLR and CLR in NTR fishes. The CLRs results suggest that Group V receptors are absent in fishes and Group II and VI receptors are well established in the early vertebrate evolution. Our comprehensive research of PRRs involving NTR fishes provides a new insight into PRR evolution in primitive vertebrate.

Keywords

pattern recognition receptors (PRR) Toll-like receptors (TLR) RIG-I-like receptors (RLR) C-type lectin receptors (CLR) NOD-like receptors (NLR) innate immunity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31372190).

Supplementary material

11427_2019_9481_MOESM1_ESM.pdf (775 kb)
Supplementary Figure 1 Structure of TLR5 proteins
11427_2019_9481_MOESM2_ESM.pdf (5.1 mb)
Supplementary Figure 2 Protein sequences alignment of TLR4
11427_2019_9481_MOESM3_ESM.docx (230 kb)
Supplementary File 1. The TLRs protein sequences
11427_2019_9481_MOESM4_ESM.docx (25 kb)
Supplementary Table 1 TLR and relevant signal genes queries list
11427_2019_9481_MOESM5_ESM.docx (16 kb)
Supplementary Table 2 RLR genes queries list
11427_2019_9481_MOESM6_ESM.docx (21 kb)
Supplementary Table 3 NLR genes queries list
11427_2019_9481_MOESM7_ESM.docx (16 kb)
Supplementary Table 4 CLR genes queries list
11427_2019_9481_MOESM8_ESM.docx (22 kb)
Supplementary Table 5 TLRs annotation results
11427_2019_9481_MOESM9_ESM.docx (17 kb)
Supplementary Table 6 TLR4 protein sequences identity matrix
11427_2019_9481_MOESM10_ESM.docx (17 kb)
Supplementary Table 7 TLR relevant signal genes annotation results
11427_2019_9481_MOESM11_ESM.docx (16 kb)
Supplementary Table 8 RLRs and signal relevant genes annotation results
11427_2019_9481_MOESM12_ESM.docx (19 kb)
Supplementary Table 9 NLR annotation results
11427_2019_9481_MOESM13_ESM.docx (18 kb)
Supplementary Table 10 CLR annotation results

References

  1. Amemiya, C.T., Alföldi, J., Lee, A.P., Fan, S., Philippe, H., Maccallum, I., Braasch, I., Manousaki, T., Schneider, I., Rohner, N., et al. (2013). The african coelacanth genome provides insights into tetrapod evolution. Nature 496, 311–316.CrossRefGoogle Scholar
  2. Berczi, I., Bertók, L., and Bereznai, T. (1966). Comparative studies on the toxicity of Escherichia coli lipopolysaccharide endotoxin in various animal species. Can J Microbiol 12, 1070–1071.CrossRefGoogle Scholar
  3. Bilodeau, A.L., and Waldbieser, G.C. (2005). Activation of TLR3 and TLR5 in channel catfish exposed to virulent Edwardsiella ictaluri. Dev Comp Immunol 29, 713–721.CrossRefGoogle Scholar
  4. Birney, E., Clamp, M., and Durbin, R. (2004). Genewise and genomewise. Genome Res 14, 988–995.CrossRefGoogle Scholar
  5. Boudinot, P., Zou, J., Ota, T., Buonocore, F., Scapigliati, G., Canapa, A., Cannon, J., Litman, G., and Hansen, J.D. (2014). A tetrapod-like repertoire of innate immune receptors and effectors for coelacanths. J Exp Zool (Mol Dev Evol) 322, 415–437.CrossRefGoogle Scholar
  6. Brown, G.D., Willment, J.A., and Whitehead, L. (2018). C-type lectins in immunity and homeostasis. Nat Rev Immunol 18, 374–389.CrossRefGoogle Scholar
  7. Brownlie, R., and Allan, B. (2011). Avian toll-like receptors. Cell Tissue Res 343, 121–130.CrossRefGoogle Scholar
  8. Bruns, A.M., and Horvath, C.M. (2012). Activation of RIG-I-like receptor signal transduction. Crit Rev Biochem Mol Biol 47, 194–206.CrossRefGoogle Scholar
  9. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. (2009). Blast+: Architecture and applications. BMC BioInf 10, 421.CrossRefGoogle Scholar
  10. Chen, S.N., Zou, P.F., and Nie, P. (2017). Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) in fish: Current knowledge and future perspectives. Immunology 151, 16–25.CrossRefGoogle Scholar
  11. Chen, W.Q., Hu, Y.W., Zou, P.F., Ren, S.S., Nie, P., and Chang, M.X. (2015). MAVS splicing variants contribute to the induction of interferon and interferon-stimulated genes mediated by RIG-I-like receptors. Dev Comp Immunol 49, 19–30.CrossRefGoogle Scholar
  12. Dambuza, I.M., and Brown, G.D. (2015). C-type lectins in immunity: Recent developments. Curr Opin Immunol 32, 21–27.CrossRefGoogle Scholar
  13. Drickamer, K., and Taylor, M.E. (2015). Recent insights into structures and functions of C-type lectins in the immune system. Curr Opin Struct Biol 34, 26–34.CrossRefGoogle Scholar
  14. Edgar, R.C. (2004). Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797.CrossRefGoogle Scholar
  15. Feng, X., Zhang, Y., Yang, C., Liao, L., Wang, Y., and Su, J. (2015). Functional characterizations of IPS-1 in cik cells: Potential roles in regulating IFN-I response dependent on IFN-7 but not irf3. Dev Comp Immunol 53, 23–32.CrossRefGoogle Scholar
  16. Gao, D., Wu, J., Wu, Y.T., Du, F., Aroh, C., Yan, N., Sun, L., and Chen, Z.J. (2013). Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341, 903–906.CrossRefGoogle Scholar
  17. Geijtenbeek, T.B.H., and Gringhuis, S.I. (2016). C-type lectin receptors in the control of T helper cell differentiation. Nat Rev Immunol 16, 433–448.CrossRefGoogle Scholar
  18. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of phyml 3.0. Systatic Biol 59, 307–321.CrossRefGoogle Scholar
  19. Hall, T.A. (1999). Bioedit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Series 41, 95–98.Google Scholar
  20. Hibino, T., Loza-Coll, M., Messier, C., Majeske, A.J., Cohen, A.H., Terwilliger, D.P., Buckley, K.M., Brockton, V., Nair, S.V., Berney, K., et al. (2006). The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300, 349–365.CrossRefGoogle Scholar
  21. Howe, K., Schiffer, P.H., Zielinski, J., Wiehe, T., Laird, G.K., Marioni, J.C., Soylemez, O., Kondrashov, F., and Leptin, M. (2016). Structure and evolutionary history of a large family of NLR proteins in the zebrafish. Open Biol 6, 160009.CrossRefGoogle Scholar
  22. Huang, R., Dong, F., Jang, S., Liao, L., Zhu, Z., and Wang, Y. (2012). Isolation and analysis of a novel grass carp toll-like receptor 4 (TLR4) gene cluster involved in the response to grass carp reovirus. Dev Comp Immunol 38, 383–388.CrossRefGoogle Scholar
  23. Huang, S., Yuan, S., Guo, L., Yu, Y., Li, J., Wu, T., Liu, T., Yang, M., Wu, K., Liu, H., et al. (2008). Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity. Genome Res 18, 1112–1126.CrossRefGoogle Scholar
  24. Hwang, S.D., Asahi, T., Kondo, H., Hirono, I., and Aoki, T. (2010). Molecular cloning and expression study on toll-like receptor 5 paralogs in Japanese flounder, Paralichthys olivaceus. Fish Shellfish Immunol 29, 630–638.CrossRefGoogle Scholar
  25. Iliev, D.B., Roach, J.C., Mackenzie, S., Planas, J.V., and Goetz, F.W. (2005). Endotoxin recognition: In fish or not in fish? FEBS Lett 579, 6519–6528.CrossRefGoogle Scholar
  26. Ishii, A., Kawasaki, M., Matsumoto, M., Tochinai, S., and Seya, T. (2007a). Phylogenetic and expression analysis of amphibian xenopus toll-like receptors. Immunogenetics 59, 281–293.CrossRefGoogle Scholar
  27. Ishii, A., Matsuo, A., Sawa, H., Tsujita, T., Shida, K., Matsumoto, M., and Seya, T. (2007b). Lamprey TLRs with properties distinct from those of the variable lymphocyte receptors. J Immunol 178, 397–406.CrossRefGoogle Scholar
  28. Jault, C., Pichon, L., and Chluba, J. (2004). Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol Immunol 40, 759–771.CrossRefGoogle Scholar
  29. Jia, P., Jin, Y., Chen, L., Zhang, J., Jia, K., and Yi, M. (2016). Molecular characterization and expression analysis of mitochondrial antiviral signaling protein gene in sea perch, lateolabrax japonicus. Dev Comp Immunol 55, 188–193.CrossRefGoogle Scholar
  30. Kasamatsu, J., Oshiumi, H., Matsumoto, M., Kasahara, M., and Seya, T. (2010). Phylogenetic and expression analysis of lamprey toll-like receptors. Dev Comp Immunol 34, 855–865.CrossRefGoogle Scholar
  31. Kawai, T., and Akira, S. (2011). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650.CrossRefGoogle Scholar
  32. Kufer, T.A., and Sansonetti, P.J. (2011). NLR functions beyond pathogen recognition. Nat Immunol 12, 121–128.CrossRefGoogle Scholar
  33. Laing, K.J., Purcell, M.K., Winton, J.R., and Hansen, J.D. (2008). A genomic view of the nod-like receptor family in teleost fish: Identification of a novel NLR subfamily in zebrafish. BMC Evol Biol 8, 42.CrossRefGoogle Scholar
  34. Le, S.Q., and Gascuel, O. (2008). An improved general amino acid replacement matrix. Mol Biol Evol 25, 1307–1320.CrossRefGoogle Scholar
  35. Lefort, V., Longueville, J.E., and Gascuel, O. (2017). SMS: Smart model selection in PhyML. Mol Biol Evol 34, 2422–2424.CrossRefGoogle Scholar
  36. Li, J., Chu, Q., and Xu, T. (2016). A genome-wide survey of expansive NLR-C subfamily in miiuy croaker and characterization of the NLRB30.2 genes. Dev Comp Immunol 61, 116–125.CrossRefGoogle Scholar
  37. Li, Y., Li, Y., Cao, X., Jin, X., and Jin, T. (2017). Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways. Cell Mol Immunol 14, 80–89.CrossRefGoogle Scholar
  38. Loo, Y.M., and Gale Jr., M. (2011). Immune signaling by RIG-I-like receptors. Immunity 34, 680–692.CrossRefGoogle Scholar
  39. Meijer, A.H., Gabby Krens, S.F., Medina Rodriguez, I.A., He, S., Bitter, W., Ewa Snaar-Jagalska, B., and Spaink, H.P. (2004). Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish. Mol Immunol 40, 773–783.CrossRefGoogle Scholar
  40. Meunier, E., and Broz, P. (2017). Evolutionary convergence and divergence in NLR function and structure. Trends Immunol 38, 744–757.CrossRefGoogle Scholar
  41. Mukherjee, K., Korithoski, B., and Kolaczkowski, B. (2014). Ancient origins of vertebrate-specific innate antiviral immunity. Mol Biol Evol 31, 140–153.CrossRefGoogle Scholar
  42. Onoguchi, K., Yoneyama, M., and Fujita, T. (2011). Retinoic acid-inducible gene-I-like receptors. J Interf Cytok Res 31, 27–31.CrossRefGoogle Scholar
  43. Oshiumi, H., Tsujita, T., Shida, K., Matsumoto, M., Ikeo, K., and Seya, T. (2003). Prediction of the prototype of the human toll-like receptor gene family from the pufferfish, Fugu rubripes, genome. Immunogenetics 54, 791–800.Google Scholar
  44. Palti, Y. (2011). Toll-like receptors in bony fish: From genomics to function. Dev Comp Immunol 35, 1263–1272.CrossRefGoogle Scholar
  45. Panagos, P.G., Dobrinski, K.P., Chen, X., Grant, A.W., Traver, D., Djeu, J. Y., Wei, S., and Yoder, J.A. (2006). Immune-related, lectin-like receptors are differentially expressed in the myeloid and lymphoid lineages of zebrafish. Immunogenetics 58, 31–40.CrossRefGoogle Scholar
  46. Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). Signalp 4.0: Discriminating signal peptides from transmembrane regions. Nat Methods 8, 785–786.CrossRefGoogle Scholar
  47. Pietretti, D., Scheer, M., Fink, I.R., Taverne, N., Savelkoul, H.F.J., Spaink, H.P., Forlenza, M., and Wiegertjes, G.F. (2014). Identification and functional characterization of nonmammalian Toll-like receptor 20. Immunogenetics 66, 123–141.CrossRefGoogle Scholar
  48. Pietretti, D., and Wiegertjes, G.F. (2014). Ligand specificities of toll-like receptors in fish: Indications from infection studies. Dev Comp Immunol 43, 205–222.CrossRefGoogle Scholar
  49. Quiniou, S.M.A., Boudinot, P., and Bengtén, E. (2013). Comprehensive survey and genomic characterization of toll-like receptors (TLRs) in channel catfish, Ictalurus punctatus: Identification of novel fish TLRs. Immunogenetics 65, 511–530.CrossRefGoogle Scholar
  50. Raetz, C.R.H., and Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annu Rev Biochem 71, 635–700.CrossRefGoogle Scholar
  51. Rajendran, K.V., Zhang, J., Liu, S., Kucuktas, H., Wang, X., Liu, H., Sha, Z., Terhune, J., Peatman, E., and Liu, Z. (2012). Pathogen recognition receptors in channel catfish: I. Identification, phylogeny and expression of NOD-like receptors. Dev Comp Immunol 37, 77–86.CrossRefGoogle Scholar
  52. Rauta, P.R., Samanta, M., Dash, H.R., Nayak, B., and Das, S. (2014). Toll-like receptors (TLRs) in aquatic animals: Signaling pathways, expressions and immune responses. Immunol Lett 158, 14–24.CrossRefGoogle Scholar
  53. Reikine, S., Nguyen, J.B., and Modis, Y. (2014). Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front Immunol 5.Google Scholar
  54. Roach, J.C., Glusman, G., Rowen, L., Kaur, A., Purcell, M.K., Smith, K.D., Hood, L.E., and Aderem, A. (2005). The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 102, 9577–9582.CrossRefGoogle Scholar
  55. Sattler, S., Ghadially, H., and Hofer, E. (2012). Evolution of the C-type lectin-like receptor genes of the Dectin-1 cluster in the NK gene complex. Sci World J 2012(13), 1–11.CrossRefGoogle Scholar
  56. Schroder, K., and Tschopp, J. (2010). The inflammasomes. Cell 140, 821–832.CrossRefGoogle Scholar
  57. Schultz, J., Copley, R.R., Doerks, T., Ponting, C.P., and Bork, P. (2000). Smart: A web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28, 231–234.CrossRefGoogle Scholar
  58. Sepulcre, M.P., Alcaraz-Perez, F., Lopez-Munoz, A., Roca, F.J., Meseguer, J., Cayuela, M.L., and Mulero, V. (2009). Evolution of lipopolysaccharide (LPS) recognition and signaling: Fish TLR4 does not recognize LPS and negatively regulates NF-kB activation. J Immunol 182, 1836–1845.CrossRefGoogle Scholar
  59. Seth, R.B., Sun, L., Ea, C.K., and Chen, Z.J. (2005). Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122, 669–682.CrossRefGoogle Scholar
  60. Shen, B., Hu, Y., Zhang, S., Zheng, J., Zeng, L., Zhang, J., Zhu, A., and Wu, C. (2016). Molecular characterization and expression analyses of three RIG-I-like receptor signaling pathway genes (MDA5, LGP2 and MAVS) in Larimichthys crocea. Fish Shellfish Immunol 55, 535–549.CrossRefGoogle Scholar
  61. Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., and Kimoto, M. (1999). Md-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189, 1777–1782.CrossRefGoogle Scholar
  62. Smith, J.J., Kuraku, S., Holt, C., Sauka-Spengler, T., Jiang, N., Campbell, M.S., Yandell, M.D., Manousaki, T., Meyer, A., Bloom, O.E., et al. (2013). Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet 45, 415–421.CrossRefGoogle Scholar
  63. Stein, C., Caccamo, M., Laird, G., and Leptin, M. (2007). Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish. Genome Biol 8, R251.CrossRefGoogle Scholar
  64. Su, J., Yang, C., Xiong, F., Wang, Y., and Zhu, Z. (2009). Toll-like receptor 4 signaling pathway can be triggered by grass carp reovirus and Aeromonas hydrophila infection in rare minnow Gobiocypris rarus. Fish Shellfish Immunol 27, 33–39.CrossRefGoogle Scholar
  65. Sullivan, C., Charette, J., Catchen, J., Lage, C.R., Giasson, G., Postlethwait, J.H., Millard, P.J., and Kim, C.H. (2009). The gene history of zebrafish TLR4a and TLR4b is predictive of their divergent functions. J Immunol 183, 5896–5908.CrossRefGoogle Scholar
  66. Tahoun, A., Jensen, K., Corripio-Miyar, Y., McAteer, S., Smith, D.G.E., McNeilly, T.N., Gally, D.L., and Glass, E.J. (2017). Host species adaptation of TLR5 signalling and flagellin recognition. Scientific Reports 7.Google Scholar
  67. Takeuchi, O., and Akira, S. (2010). Pattern recognition receptors and inflammation. Cell 140, 805–820.CrossRefGoogle Scholar
  68. Tsoi, S., Park, K.C., Kay, H.H., O’Brien, T.J., Podor, E., Sun, G., Douglas, S.E., Brown, L.L., and Johnson, S.C. (2006). Identification of a transcript encoding a soluble form of toll-like receptor 5 (TLR5) in atlantic salmon during Aeromonas salmonicida infection. Vet Immunol Immunopathol 109, 183–187.CrossRefGoogle Scholar
  69. Tsujita, T., Tsukada, H., Nakao, M., Oshiumi, H., Matsumoto, M., and Seya, T. (2004). Sensing bacterial flagellin by membrane and soluble orthologs of Toll-like receptor 5 in rainbow trout (Onchorhynchus mikiss). J Biol Chem 279, 48588–48597.CrossRefGoogle Scholar
  70. Tsukada, H., Fukui, A., Tsujita, T., Matsumoto, M., Iida, T., and Seya, T. (2005). Fish soluble toll-like receptor 5 (TLR5s) is an acute-phase protein with integral flagellin-recognition activity. Int J Mol Med 15, 519–525.Google Scholar
  71. Wang, J., Chai, J., and Wang, H. (2016). Structure of the mouse Toll-like receptor 13 ectodomain in complex with a conserved sequence from bacterial 23S ribosomal RNA. FEBS J 283, 1631–1635.CrossRefGoogle Scholar
  72. Wang, J., Zhang, Z., Liu, J., Li, F., Chang, F., Fu, H., Zhao, J., and Yin, D. (2015). Structural characterization and evolutionary analysis of fish-specific TLR27. Fish Shellfish Immunol 45, 940–945.CrossRefGoogle Scholar
  73. Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., and Mathison, J.C. (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433.CrossRefGoogle Scholar
  74. Yuen, B., Bayes, J.M., and Degnan, S.M. (2014). The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals. Mol Biol Evol 31, 106–120.CrossRefGoogle Scholar
  75. Zelensky, A.N., and Gready, J.E. (2005). The C-type lectin-like domain superfamily. FEBS J 272, 6179–6217.CrossRefGoogle Scholar
  76. Zelensky, A.N., and Gready, J.E. (2004). C-type lectin-like domains in Fugu rubripes. BMC Genomics 5, 51.CrossRefGoogle Scholar
  77. Zhang, J., Kong, X., Zhou, C., Li, L., Nie, G., and Li, X. (2014). Toll-like receptor recognition of bacteria in fish: Ligand specificity and signal pathways. Fish Shellfish Immunol 41, 380–388.CrossRefGoogle Scholar
  78. Zhang, J., Liu, S., Rajendran, K.V., Sun, L., Zhang, Y., Sun, F., Kucuktas, H., Liu, H., and Liu, Z. (2013). Pathogen recognition receptors in channel catfish: III phylogeny and expression analysis of Toll-like receptors. Dev Comp Immunol 40, 185–194.CrossRefGoogle Scholar
  79. Zhang, L., Gao, Z., Yu, L., Zhang, B., Wang, J., and Zhou, J. (2018). Nucleotide-binding and oligomerization domain (NOD)-like receptors in teleost fish: Current knowledge and future perspectives. J Fish Dis 41, 1317–1330.CrossRefGoogle Scholar
  80. Zhang, Z., Yuan, B., Bao, M., Lu, N., Kim, T., and Liu, Y.J. (2011). The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12, 959–965.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.BGI Education CenterUniversity of Chinese Academy of SciencesShenzhenChina
  2. 2.China National GenebankBGI-ShenzhenShenzhenChina
  3. 3.State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of ZoologyChinese Academy of SciencesKunmingChina
  4. 4.Centre for Social Evolution, Department of Biology, Universitetsparken 15University of CopenhagenCopenhagenDenmark
  5. 5.Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of HydrobiologyChinese Academy of SciencesWuhanChina

Personalised recommendations