Science China Life Sciences

, Volume 62, Issue 4, pp 553–565 | Cite as

Phylogenetic relationships of Cypriniformes and plasticity of pharyngeal teeth in the adaptive radiation of cyprinids

  • Wenjing Tao
  • Lei Yang
  • Richard L. Mayden
  • Shunping HeEmail author
Research Paper


The Cypriniformes comprise approximately 4,200 species accounting for 25% of the diversity of all freshwater fish, which is widely distributed across the world’s continents except Antarctica, South America, and Australia. The highest species diversity is found in Southeastern Asia. Despite its remarkable species diversity and broad-scale geographic patterns of distribution, the evolutionary history of this major freshwater fish group remains largely unresolved. To gain insight of the evolutionary history of Cypriniformes, we present a phylogeny of this group using 1 mitochondrial gene and 15 nuclear genes comprising a total of 14,061 bp. Bayesian inference using all gene fragments yielded a well resolved phylogeny, which is mostly consistent with topologies obtained from Maximum Likelihood analyses. Our results further confirmed the monophyly of Cypriniformes and seven constituent subclades including Cyprinidae, Catostomidae, Gyrinocheilidae, Balitoridae, Cobitidae, Nemacheilidae, and Botiidae. Bayesian divergence time analysis indicated that the origin of the Cypriniformes was about 193 Mya during the early Jurassic, coinciding with the onset of the Pangaea breakup. The basal divergence of Cypriniformes is 154 Mya during the late Jurassic. Our findings from molecular divergence and biogeographical analysis indicate the most likely initial geographical range of the ancient Cypriniformes was both East and South Asia (Southeastern area of Mesozoic Laurasia). Moreover, the burst in species diversity in Cyprinidae afforded by the nearly worldwide colonization is possibly in response to the plasticity of pharyngeal dentition. The present study demonstrates that the Cypriniformes was about 193 Mya during the early Jurassic, coinciding with the onset of the Pangaea breakup. The plasticity of pharyngeal dentition of cyprinids might contribute to the burst and radiation of this lineage. The phylogenetic and biogeographic analyses in this study help to improve our understanding of the evolutionary history of this diverse and important freshwater fish group.


phylogeny biogeographic analyses Cypriniformes pharyngeal teeth adaptive radiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to the people who provided help with the field work. Special thanks go to Chuanjiang Zhou and Liandong Yang for their participation in sample collection. We are also indebted to Lihong Guan and Meiling Yu for their laboratory assistance. This work was supported by the Pilot projects (XDB13020100), the National Natural Science Foundation of China (31372190, 91131014, 31502147), the Fundamental Research Funds for the Central Universities (Ministry of Education of China) (XDJK2018B025). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Supplementary material

11427_2019_9480_MOESM1_ESM.docx (33 kb)
Table S1 Species, catalog numbers, and sampling location of cypriniform fishes in this study.


  1. Banarescu, P., and Coad B.W. (1991). Cyprinids of Eurasia. Systematics biology and exploitation. (Springer Netherlands), pp. 127–155.Google Scholar
  2. Briggs, J.C. (1979). Ostariophysań zoogeography: an alternative hypothesis. Copeia 1979(1), 111–118.CrossRefGoogle Scholar
  3. Briggs, J.C. (2005). The biogeography of otophysan fishes (Ostariophysi: Otophysi): a new appraisal. J Biogeogr 32, 287–294.CrossRefGoogle Scholar
  4. Briolay, J., Galtier, N., Brito, R.M., and Bouvet, Y. (1998). Molecular phylogeny of Cyprinidae inferred from cytochrome b DNA sequences. Mol Phylogenet Evol 9, 100–108.CrossRefGoogle Scholar
  5. Cavender, T.M. (1986). Review of the fossil history of North American freshwater fishes. In Zoogeography of North American Freshwater Fishes. Hocutt, C.H., Wiley, E.O., ed. (New York: John Wiley & Sons), pp. 699–724.Google Scholar
  6. Chang, C.H., Li, F., Shao, K.T., Lin, Y.S., Morosawa, T., Kim, S., Koo, H., Kim, W., Lee, J.S., He, S., et al. (2014). The biogeography of otophysan fishes (Ostariophysi: Otophysi): a new appraisal. Mol Phylogenet Evol 81, 182–194.CrossRefGoogle Scholar
  7. Chang, M., Miao, D., Chen, Y., Zhou, J., and Chen, P. (2001). Suckers (Fish, Catostomidae) from the Eocene of China account for the family’s current disjunct distributions. Sci China Ser D-Earth Sci 44, 577–586.CrossRefGoogle Scholar
  8. Chen, W.J., Lavoué, S., and Mayden, R.L. (2013). Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei). Evolution 67, 2218–2239.CrossRefGoogle Scholar
  9. Chen, W.J., Lheknim, V., and Mayden, R.L. (2009). Molecular phylogeny of the Cobitoidea (Teleostei: Cypriniformes) revisited: position of enigmatic loach Ellopostoma resolved with six nuclear genes. J Fish Biol 75, 2197–2208.CrossRefGoogle Scholar
  10. Chen, W.J., and Mayden, R.L. (2009). Molecular systematics of the Cyprinoidea (Teleostei: Cypriniformes), the world’s largest clade of freshwater fishes: further evidence from six nuclear genes. Mol Phylogenet Evol 52, 544–549.CrossRefGoogle Scholar
  11. Chen, W.J., Miya, M., Saitoh, K., and Mayden, R.L. (2008). Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: the order Cypriniformes (Ostariophysi) as a case study. Gene 423, 125–134.CrossRefGoogle Scholar
  12. Cheng, P., Yu, D., Liu, S., Tang, Q., and Liu, H. (2014). Molecular phylogeny and conservation priorities of the subfamily Acheilognathinae (Teleostei: Cyprinidae). Zool Sci 31, 300–308.CrossRefGoogle Scholar
  13. Chu, X.L. (1986). Ichthyofauna and its geographical subdivision in Yunnan, China. In Pacific Fish Biology: Proceedings of the Second International Conference on Indo-Pacific Fishes. (Tokyo, Japan: Ichthyological Society of Japan), pp. 471–476.Google Scholar
  14. Dai, W., Zou, M., Yang, L., Du, K., Chen, W., Shen, Y., Mayden, R.L., and He, S. (2018). Phylogenomic perspective on the relationships and evolutionary history of the major Otocephalan lineages. Sci Rep 8, 205.CrossRefGoogle Scholar
  15. Doadrio, I., and Perdices, A. (2005). Phylogenetic relationships among the Ibero-African cobitids (Cobitis, cobitidae) based on cytochrome b sequence data. Mol Phylogenet Evol 37, 484–493.CrossRefGoogle Scholar
  16. Doosey, M.H., Bart Jr., H.L., Saitoh, K., and Miya, M. (2010). Phylogenetic relationships of catostomid fishes (Actinopterygii: Cypriniformes) based on mitochondrial ND4/ND5 gene sequences. Mol Phylogenet Evol 54, 1028–1034.CrossRefGoogle Scholar
  17. Drummond, A.J., Ho, S.Y.W., Phillips, M.J., and Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biol 4, e88.CrossRefGoogle Scholar
  18. Drummond, A.J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7, 214.CrossRefGoogle Scholar
  19. Drummond, A.J., Suchard, M.A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29, 1969–1973.CrossRefGoogle Scholar
  20. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 783–791.Google Scholar
  21. Grande, L., Eastman, J.T., and Cavender, T.M. (1982). Amyzon gosiutensis, a new catostomid fish from the Green River Formation. Copeia, 523–532.Google Scholar
  22. Hall, T.A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows95/98/NT. Nucl Acids Symp Ser 41, 95–98.Google Scholar
  23. Harris, P.M., and Mayden, R.L. (2001). Phylogenetic relationships of major clades of Catostomidae (Teleostei: Cypriniformes) as inferred from mitochondrial SSU and LSU rDNA sequences. Mol Phylogenet Evol 20, 225–237.CrossRefGoogle Scholar
  24. He, S., Gu, X., Mayden, R.L., Chen, W.J., Conway, K.W., and Chen, Y. (2008). Phylogenetic position of the enigmatic genus Psilorhynchus (Ostariophysi: Cypriniformes): evidence from the mitochondrial genome. Mol Phylogenet Evol 47, 419–425.CrossRefGoogle Scholar
  25. He, S., Yue, P., and Chen, Y. (1997). Comparative study on the morphology and development of the pharyngeal dentition in the families of Cypriniformes. Acta Zool Sin 43, 255–262.Google Scholar
  26. Hora, K.L. (1925). Note on fishes in the Indian Museum: XII. The systematic position of the cyprinoid genus Psilorhynchus McClelland. Records Indian Museum 27, 457–460.Google Scholar
  27. Howes, G.J. (1991) Systematics and biogeography: an overview. In Cyprinid Fishes. Systematics, Biology and Exploitation. Winfield, I.J., Nelson J.S., ed. (London: Chapman and Hall), pp. 1–33.Google Scholar
  28. Huelsenbeck, J.P., and Rannala, B. (1997). Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276, 227–232.CrossRefGoogle Scholar
  29. Huelsenbeck, J.P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.CrossRefGoogle Scholar
  30. Hulsey, C.D., Machado-Schiaffino, G., Keicher, L., Ellis-Soto, D., Henning, F., and Meyer, A. (2017). The integrated genomic architecture and evolution of dental divergence in East African cichlid fishes (Haplochromis chilotes×H. nyererei). G3 7, 3195–3202.CrossRefGoogle Scholar
  31. Imoto, J.M., Saitoh, K., Sasaki, T., Yonezawa, T., Adachi, J., Kartavtsev, Y. P., Miya, M., Nishida, M., and Hanzawa, N. (2013). Phylogeny and biogeography of highly diverged freshwater fish species (Leuciscinae, Cyprinidae, Teleostei) inferred from mitochondrial genome analysis. Gene 514, 112–124.CrossRefGoogle Scholar
  32. Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T., and Calcott, B. (2017). PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34, 772–773.Google Scholar
  33. Li, C., Ortí, G., Zhang, G., and Lu, G. (2007). A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evol Biol 7, 44.CrossRefGoogle Scholar
  34. Li, C., Ortí, G., and Zhao, J. (2010). The phylogenetic placement of sinipercid fishes (“Perciformes”) revealed by 11 nuclear loci. Mol Phylogenet Evol 56, 1096–1104.CrossRefGoogle Scholar
  35. Liu, H., and Su, T. (1962). Pliocene fishes from the Yushe basin, Shanxi. Vertebr Palasiat 6, 1–25.Google Scholar
  36. Liu, H., Tzeng, C.S., and Teng, H.Y. (2002). Sequence variations in the mitochondrial DNA control region and their implications for the phylogeny of the Cypriniformes. Can J Zool 80, 569–581.CrossRefGoogle Scholar
  37. Liu, J., and Chang, M. (2009). A new Eocene catostomid (Teleostei: Cypriniformes) from northeastern China and early divergence of Catostomidae. Sci China Ser D-Earth Sci 52, 189–202.CrossRefGoogle Scholar
  38. Liu, S.Q., Mayden, R.L., Zhang, J.B., Yu, D., Tang, Q.Y., Deng, X., and Liu, H.Z. (2012). Phylogenetic relationships of the Cobitoidea (Teleostei: Cypriniformes) inferred from mitochondrial and nuclear genes with analyses of gene evolution. Gene 508, 60–72.CrossRefGoogle Scholar
  39. Liu, S.Q., Zhang, J.B., Tang, Q.Y., and Liu, H.Z. (2010). Phylogenetic relationships among Cobitoidea based on mitochondrial ND4 and ND5 gene sequences. Dongwuxue Yanjiu 31, 221–229.Google Scholar
  40. López J.A., Chen W.J., and Ortí G. (2004). Esociform phylogeny. Copeia, 449–464.Google Scholar
  41. Lovejoy, N.R., Collette B.B., and McEachran J.D. (2001). Phylogenetic relationships of new world needlefishes (Teleostei: Belonidae) and the biogeography of transitions between marine and freshwater habitats. Copeia, 324–338.Google Scholar
  42. Mayden, R.L., Tang, K.L., Wood, R.W, Chen, W.J., Agnew, M.K., Conway, K.W., Yang, L., Simons, A.M., Bart, H.L., Harris, P.M., et al. (2008). Inferring the Tree of Life of the order Cypriniformes, the earth’s most diverse clade of freshwater fishes: Implications of varied taxon and character sampling. J Syst Evol 46, 424–438.Google Scholar
  43. Mayden, R.L., and Chen, W.J. (2010). The world’s smallest vertebrate species of the genus Paedocypris: A new family of freshwater fishes and the sister group to the world’s most diverse clade of freshwater fishes (Teleostei: Cypriniformes). Mol Phylogenet Evol 57, 152–175.CrossRefGoogle Scholar
  44. Mayden, R.L., Chen, W.J., Bart, H.L., Doosey, M.H., Simons, A.M., Tang, K.L., Wood, R.M., Agnew, M.K., Yang, L., Hirt, M.V., et al. (2011). Reconstructing the phylogenetic relationships of the earth’s most diverse clade of freshwater fishes—order Cypriniformes (Actinopterygii: Ostariophysi): A case study using multiple nuclear loci and the mitochondrial genome. Mol Phylogenet Evol 51, 500–514.CrossRefGoogle Scholar
  45. Mabee, P.M., Arratia, G., Coburn, M., Haendel, M., Hilton, E.J., Lundberg, J.G., Mayden, R.L., Rios, N., and Westerfield, M. (2007). Connecting evolutionary morphology to genomics using ontologies: a case study from Cypriniformes including zebrafish. J Exp Zool 308B, 655–668.CrossRefGoogle Scholar
  46. Menon, A.G. (1986). Distribution of Cobitoidea in space and time. In Indo-Pacific Fish Biology: Proceedings of the Second International Conference on Indo-Pacific Fishes. Uyeno T, Arai R, Taniuchi T, Matsuura K, ed. (Tokyo: Ichthyological Society of Japan), pp. 514–520.Google Scholar
  47. Min, R., Chen, X.Y., Yang J.X., Richard, W., and Richard, M.L. (2012). Phylogenetic relationships of the genus Homatula (Cypriniformes: Nemacheilidae), with special reference to the biogeographic history around the Yunnan-Guizhou plateau. Zootaxa 14, 78–94.Google Scholar
  48. Nakajima, T. (1977). Development and replacement pattern of the pharyngeal dentition in the cyprinids. Acta phytotax Geobot 28, 186–190.Google Scholar
  49. Nelson, J.S. (2006). Fishes of the World (Fourth Edition) (John Wiley & Sons, Inc).Google Scholar
  50. Nelson, J.S., Grande, T.C., and Wilson M.V.H. (2016). Fishes of the World, 5th Edition (New York: John Wiley & Sons).CrossRefGoogle Scholar
  51. Pasco-Viel, E., Charles, C., Chevret, P., Semon, M., Tafforeau, P., Viriot, L., and Laudet, V. (2010). Evolutionary trends of the pharyngeal dentition in Cypriniformes (Actinopterygii: Ostariophysi). PLoS ONE 5, e11293.CrossRefGoogle Scholar
  52. Pasco-Viel, E., Yang, L., Veran, M., Balter, V., Mayden, R.L., Laudet, V., and Viriot, L. (2014). Stability versus diversity of the dentition during evolutionary radiation in cyprinine fish. Proc R Soc B-Biol Sci 281, 20132688.CrossRefGoogle Scholar
  53. Patterson, C. (1993). Osteichthyes: Teleostei. In The Fossil Record 2. Benton M.J., ed. (London: Chapman and Hall), pp. 621–656.Google Scholar
  54. Perea, S., Böhme, M., Zupancic, P., Freyhof, J., Sanda, R., Ozuluğ, M., Abdoli, A., and Doadrio, I. (2010). Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evol Biol 10, 265.CrossRefGoogle Scholar
  55. Posada, D., and Crandall, K.A. MODEL TEST: testing the model of DNA substitution. Bioinformatics 14, 817–818.Google Scholar
  56. Rambaut A., and Drummond A.J. (2013). TreeAnnotator v1. 7.0, University of Edinburgh, Institute of Evolutionary Biology.Google Scholar
  57. Saitoh, K., Miya, M., Inoue, J.G., Ishiguro, N.B., and Nishida, M. (2003). Mitochondrial genomics of ostariophysan fishes: perspectives on phylogeny and biogeography. J Mol Evol 56, 464–472.CrossRefGoogle Scholar
  58. Saitoh, K., Sado, T., Mayden, R.L., Hanzawa, N., Nakamura, K., Nishida, M., and Miya, M. (2006). Mitogenomic Evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): The first evidence toward resolution of higher-level relationships of the world’s largest freshwater fish clade based on 59 whole mitogenome sequences. J Mol Evol 63, 826–841.CrossRefGoogle Scholar
  59. Saitoh, K., Sado, T., Doosey, M.H., BART Jr, H.L., Inoue, J.G., Nishida, M., Mayden, R.L., and Miya, M. (2011). Evidence from mitochondrial genomics supports the lower Mesozoic of South Asia as the time and place of basal divergence of Cypriniform fishes (Actinopterygii: Ostariophysi). Zool J Linn Soc 161, 633–662.CrossRefGoogle Scholar
  60. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: a laboratory manual.Google Scholar
  61. Sawada, Y. (1982). Phylogeny and zoogeography of the superfamily Cobitoidea (Cyprinoidei, Cypriniformes), Memories of the Faculty of Fisheries. Hokkaido University.Google Scholar
  62. Siebert, D.J. (1987). Interrelationships among families of the order Cypriniformes (Teleostei), Dissertation.Google Scholar
  63. Slechtová, V., Bohlen, J., Freyhof, J., and Ráb, P. (2006). Molecular phylogeny of the Southeast Asian freshwater fish family Botiidae (Teleostei: Cobitoidea) and the origin of polyploidy in their evolution. Mol Phylogenet Evol 39, 529–541.CrossRefGoogle Scholar
  64. Slechtova, V., Bohlen, J., and Tan, H.H. (2007). Families of Cobitoidea (Teleostei Cypriniformes) as revealed from nuclear genetic data and the position of the mysterious genera Barbucca, Psilorhynchus, Serpenticobitis and Vaillantella. Mol Phylogenet Evol 44, 1358–1365.CrossRefGoogle Scholar
  65. Smith, A.G., Smith, D.G., and Funnell, B.M. (1994). Atlas of Mesozoic and Cenozoic Coastlines (Cambridge University Press), pp. 778–826.Google Scholar
  66. Stamatakis, A., Ludwig, T., and Meier, H. (2005). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21, 456–463.CrossRefGoogle Scholar
  67. Stock, D.W. (2007). Zebrafish dentition in comparative context. J Exp Zool 308B, 523–549.CrossRefGoogle Scholar
  68. Stout, C.C., Tan, M., Lemmon, A.R., Lemmon, E.M., and Armbruster, J.W. (2016). Resolving Cypriniformes relationships using an anchored enrichment approach. BMC Evol Biol 16, 244.CrossRefGoogle Scholar
  69. Swofford, D.L. (2003). PAUP*. Phylogenetic Analysis using Parsinomy (and Other Methods). ver 4.0.Google Scholar
  70. Tang, K.L., Agnew, M.K., Hirt, M.V., Sado, T., Schneider, L.M., Freyhof, J., Sulaiman, Z., Swartz, E., Vidthayanon, C., Miya, M., et al. (2010). Systematics of the subfamily Danioninae (Teleostei: Cypriniformes: Cyprinidae). Mol Phylogenet Evol 57, 189–214.CrossRefGoogle Scholar
  71. Tang, Q., Liu, H., Mayden, R., and Xiong, B. (2006). Comparison of evolutionary rates in the mitochondrial DNA cytochrome b gene and control region and their implications for phylogeny of the Cobitoidea (Teleostei: Cypriniformes). Mol Phylogenet Evol 39, 347–357.CrossRefGoogle Scholar
  72. Tao, W., Mayden, R.L., and He, S. (2013). Remarkable phylogenetic resolution of the most complex clade of Cyprinidae (Teleostei: Cypriniformes): a proof of concept of homology assessment and partitioning sequence data integrated with mixed model Bayesian analyses. Mol Phylogenet Evol 66, 603–616.CrossRefGoogle Scholar
  73. Tao, W., Zou, M., Wang, X., Gan, X., Mayden, R.L., and He, S. (2010). Phylogenomic analysis resolves the formerly intractable adaptive diversification of the endemic clade of east Asian Cyprinidae (Cypriniformes). PLoS ONE 5, e13508.CrossRefGoogle Scholar
  74. Thoni, R.J., and Mayden, R.L. (2015). Garra robertsi, a new cyprinid (Cypriniformes: Cyprinidae) fish species from Borneo. Zootaxa 3985, 284–290.CrossRefGoogle Scholar
  75. Tsigenopoulos, C.S., Ráb, P., Naran, D., and Berrebi, P. (2002). Multiple origins of polyploidy in the phylogeny of southern African barbs (Cyprinidae) as inferred from mtDNA markers. Heredity 88, 466–473.CrossRefGoogle Scholar
  76. Wang, X., Li, J., and He, S. (2007). Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences. Mol Phylogenet Evol 42, 157–170.CrossRefGoogle Scholar
  77. Wilson, M.V.H. (1977). Middle Eocene freshwater fishes from British Columbia. Royal Ontario Museum 113, 1–61.Google Scholar
  78. Wu, X.W. (1981). Classification and phylogenetic interrelationships among families of suborder Cyprinoidei. Sci China, 3, 369–376.Google Scholar
  79. Yang, L., Arunachalam, M., Sado, T., Levin, B.A., Golubtsov, A.S., Freyhof, J., Friel, J.P., Chen, W.J., Vincent Hirt, M., Manickam, R., et al. (2012). Molecular phylogeny of the cyprinid tribe Labeonini (Teleostei: Cypriniformes). Mol Phylogenet Evol 65, 362–379.CrossRefGoogle Scholar
  80. Yang, L., Sado, T., Vincent Hirt, M., Pasco-Viel, E., Arunachalam, M., Li, J., Wang, X., Freyhof, J., Saitoh, K., Simons, A.M., et al. (2015). Phylogeny and polyploidy: Resolving the classification of cyprinine fishes (Teleostei: Cypriniformes). Mol Phylogenet Evol 85, 97–116.CrossRefGoogle Scholar
  81. Yu, Y., Harris, A.J., Blair, C., and He, X. (2015). RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol Phylogenet Evol 87, 46–49.CrossRefGoogle Scholar
  82. Zhou, J.J. (1992). A new Cobitis from the middle Miocene of Shanwang, Shandong. Vertebrata PalAsiatica 30, 71–76.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wenjing Tao
    • 1
    • 2
  • Lei Yang
    • 3
  • Richard L. Mayden
    • 4
  • Shunping He
    • 1
    • 5
    Email author
  1. 1.Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  2. 2.Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life SciencesSouthwest UniversityChongqingChina
  3. 3.Florida Museum of Natural HistoryUniversity of FloridaGainesvilleUSA
  4. 4.Department of BiologySaint Louis UniversitySt. LouisUSA
  5. 5.CAS Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina

Personalised recommendations