Fighting against fall armyworm by using multiple genes pyramiding and silencing (MGPS) technology
Insight
First Online:
- 5 Downloads
Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
This work was supported by the Genetically Modified Organisms Breeding Major Project of China (2019ZX08010004–004) and the National Natural Science Foundation of China (U1804231 and 31972469).
References
- Adeyinka, O. S., Tabassum, B., Nasir, I. A., Yousaf, I., Sajid, I. A., Shehzad, K., Batcho, A., and Husnain, T. (2019). Identification and validation of potential reference gene for effective dsRNA knockdown analysis in Chilo partellus. Sci Rep 9, 13629.CrossRefGoogle Scholar
- Bingsohn, L., Knorr, E., Billion, A., Narva, K. E., and Vilcinskas, A. (2017). Knockdown of genes in the Toll pathway reveals new lethal RNA interference targets for insect pest control. Insect Mol Biol 26, 92–102.CrossRefGoogle Scholar
- Cao, J., Yu, Y., Huang, J., Liu, R., Chen, Y., Li, S., and Liu, J. (2017). Genome re-sequencing analysis uncovers pathogenecity-related genes undergoing positive selection in Magnaporthe oryzae. Sci China Life Sci 60, 880–890.CrossRefGoogle Scholar
- Chen, D., Chen, F., Chen, C., Chen, X., and Mao, Y. (2017). Transcriptome analysis of three cotton pests reveals features of gene expressions in the mesophyll feeder Apolygus lucorum. Sci China Life Sci 60, 826–838.CrossRefGoogle Scholar
- Chu, C. C., Sun, W., Spencer, J. L., Pittendrigh, B. R., and Seufferheld, M. J. (2014). Differential effects of RNAi treatments on field populations of the western corn rootworm. Pestic Biochem Physiol 110, 1–6.CrossRefGoogle Scholar
- Gouin, A., Bretaudeau, A., Nam, K., Gimenez, S., Aury, J. M., Duvic, B., Hilliou, F., Durand, N., Montagné, N., Darboux, I., et al. (2017). Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci Rep 7, 11816.CrossRefGoogle Scholar
- Guo, H., Wan, S., and Ge, F. (2017). Effect of elevated CO2 and O3 on phytohormone-mediated plant resistance to vector insects and insect-borne plant viruses. Sci China Life Sci 60, 816–825.CrossRefGoogle Scholar
- Kan, J., Fang, R., and Jia, Y. (2017). Interkingdom signaling in plant-microbe interactions. Sci China Life Sci 60, 785–796.CrossRefGoogle Scholar
- Lai, Y., Chen, H., Wei, G., Wang, G., Li, F., and Wang, S. (2017). In vivo gene expression profiling of the entomopathogenic fungus Beauveria bassiana elucidates its infection stratagems in Anopheles mosquito. Sci China Life Sci 60, 839–851.CrossRefGoogle Scholar
- Mao, Y. B., Cai, W. J., Wang, J. W., Hong, G. J., Tao, X. Y., Wang, L. J., Huang, Y. P., and Chen, X. Y. (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25, 1307–1313.CrossRefGoogle Scholar
- Meng, F. L., Ran, R. X., Li, Y., Li, N., Li, H. Z., Wang, Z. K., and Li, W. B. (2017). RNA interference mediated serine protease gene (Spbtry1) knockdown affects growth and mortality in the soybean pod borer (Lepidoptera: Olethreutidae). Fla Entomol 100, 607–615.CrossRefGoogle Scholar
- Rodríguez-de la Noval, C., Rodríguez-Cabrera, L., Izquierdo, L., Espinosa, L. A., Hernandez, D., Ponce, M., Moran-Bertot, I., Tellez-Rodríguez, P., Borras-Hidalgo, O., Huang, S., et al. (2019). Functional expression of a peritrophin A-like SfPER protein is required for larval development in Spodoptera frugiperda (Lepidoptera: Noctuidae). Sci Rep 9, 2630.CrossRefGoogle Scholar
- Scott, J. G., Michel, K., Bartholomay, L. C., Siegfried, B. D., Hunter, W. B., Smagghe, G., Zhu, K. Y., and Douglas, A. E. (2013). Towards the elements of successful insect RNAi. J Insect Physiol 59, 1212–1221.CrossRefGoogle Scholar
- Shukla, J. N., Kalsi, M., Sethi, A., Narva, K. E., Fishilevich, E., Singh, S., Mogilicherla, K., and Palli, S. R. (2016). Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol 13, 656–669.CrossRefGoogle Scholar
- Tabashnik, B. E., Brévault, T., and Carrière, Y. (2013). Insect resistance to Bt crops: Lessons from the first billion acres. Nat Biotechnol 31, 510–521.CrossRefGoogle Scholar
- Tabashnik, B. E., and Carrière, Y. (2017). Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35, 926–935.CrossRefGoogle Scholar
- Vélez, A. M., and Fishilevich, E. (2018). The mysteries of insect RNAi: A focus on dsRNA uptake and transport. Pestic Biochem Physiol 151, 25–31.CrossRefGoogle Scholar
- Wang, R. L., Xia, Q. Q., Baerson, S. R., Ren, Y., Wang, J., Su, Y. J., Zheng, S. C., and Zeng, R. S. (2015). A novel cytochrome P450 CYP6AB14 gene in Spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification. J Insect Physiol 75, 54–62.CrossRefGoogle Scholar
- Wang, Z. K., Zhang, W. D., Chen, H., and Yin, Y. P. (2012). Cloning and characterisation of the gallerimycin gene from immunised Spodoptera litura. Bull Insectol 65, 233–238.Google Scholar
- Ye, C., Jiang, Y. D., An, X., Yang, L., Shang, F., Niu, J., and Wang, J. J. (2019). Effects of RNAi-based silencing of chitin synthase gene on moulting and fecundity in pea aphids (Acyrthosiphon pisum). Sci Rep 9, 3694.CrossRefGoogle Scholar
- Zhao, Y., Sui, X., Xu, L., Liu, G., Lu, L., You, M., Xie, C., Li, B., Ni, Z., and Liang, R. (2018). Plant-mediated RNAi of grain aphid CHS1 gene confers common wheat resistance against aphids. Pest Manag Sci 74, 2754–2760.CrossRefGoogle Scholar
Copyright information
© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019