Advertisement

A new and promising application of gene editing: CRISPR-controlled smart materials for tissue engineering, bioelectronics, and diagnostics

  • Weiqi Hong
  • Mengyuan Huang
  • Yuquan Wei
  • Xiawei WeiEmail author
Insight
  • 3 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bi, H., and Yang, B. (2017). Gene editing with TALEN and CRISPR/Cas in rice. Prog Mol Biol Transl Sci 149, 81–98.CrossRefGoogle Scholar
  2. Boettcher, M., and McManus, M.T. (2015). Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell 58, 575–585.CrossRefGoogle Scholar
  3. Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics 188, 773–782.CrossRefGoogle Scholar
  4. Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M., and Doudna, J.A. (2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439.CrossRefGoogle Scholar
  5. Doudna, J.A., and Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096.CrossRefGoogle Scholar
  6. English, M.A., Soenksen, L.R., Gayet, R.V., de Puig, H., Angenent-Mari, N.M., Mao, A.S., Nguyen, P.Q., and Collins, J.J. (2019). Programmable CRISPR-responsive smart materials. Science 365, 780–785.CrossRefGoogle Scholar
  7. Gootenberg, J.S., Abudayyeh, O.O., Kellner, M.J., Joung, J., Collins, J.J., and Zhang, F. (2018). Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360, 439–444.CrossRefGoogle Scholar
  8. Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W., Essletzbichler, P., Dy, A.J., Joung, J., Verdine, V., Donghia, N., Daringer, N.M., Freije, C.A., et al. (2017). Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438–442.CrossRefGoogle Scholar
  9. He, Z.Y., Men, K., Qin, Z., Yang, Y., Xu, T., and Wei, Y.Q. (2017). Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field. Sci China Life Sci 60, 458–467.CrossRefGoogle Scholar
  10. Hsu, P.D., Lander, E.S., and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278.CrossRefGoogle Scholar
  11. Knight, S.C., Tjian, R., and Doudna, J.A. (2018). Genomes in focus: development and applications of CRISPR-Cas9 imaging technologies. Angew Chem Int Ed 57, 4329–4337.CrossRefGoogle Scholar
  12. Knott, G.J., and Doudna, J.A. (2018). CRISPR-Cas guides the future of genetic engineering. Science 361, 866–869.CrossRefGoogle Scholar
  13. Li, S.Y., Cheng, Q.X., Liu, J.K., Nie, X.Q., Zhao, G.P., and Wang, J. (2018). CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res 28, 491–493.CrossRefGoogle Scholar
  14. Pardee, K., Green, A.A., Takahashi, M.K., Braff, D., Lambert, G., Lee, J. W., Ferrante, T., Ma, D., Donghia, N., Fan, M., et al. (2016). Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165, 1255–1266.CrossRefGoogle Scholar
  15. Ren, X., Holsteens, K., Li, H., Sun, J., Zhang, Y., Liu, L.P., Liu, Q., and Ni, J.Q. (2017). Genome editing in Drosophila melanogaster: from basic genome engineering to the multipurpose CRISPR-Cas9 system. Sci China Life Sci 60, 476–489.CrossRefGoogle Scholar
  16. Shen, L., Hua, Y., Fu, Y., Li, J., Liu, Q., Jiao, X., Xin, G., Wang, J., Wang, X., Yan, C., et al. (2017). Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci China Life Sci 60, 506–515.CrossRefGoogle Scholar
  17. Singh, V., Braddick, D., and Dhar, P.K. (2017). Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 599, 1–18.CrossRefGoogle Scholar
  18. Terns, R.M., and Terns, M.P. (2014). CRISPR-based technologies: prokaryotic defense weapons repurposed. Trends Genet 30, 111–118.CrossRefGoogle Scholar
  19. Wang, Y., Meng, Z., Liang, C., Meng, Z., Wang, Y., Sun, G., Zhu, T., Cai, Y., Guo, S., Zhang, R., et al. (2017). Increased lateral root formation by CRISPR/Cas9-mediated editing of arginase genes in cotton. Sci China Life Sci 60, 524–527.CrossRefGoogle Scholar
  20. Zhang, X., Wang, L., Liu, M., and Li, D. (2017). CRISPR/Cas9 system: a powerful technology for in vivo and ex vivo gene therapy. Sci China Life Sci 60, 468–475.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Weiqi Hong
    • 1
  • Mengyuan Huang
    • 1
  • Yuquan Wei
    • 1
  • Xiawei Wei
    • 1
    Email author
  1. 1.Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina

Personalised recommendations