Science China Life Sciences

, Volume 62, Issue 11, pp 1539–1542 | Cite as

Pivoting plant immunity from theory to the field

  • Fangfang Li
  • Wende Liu
  • Xueping ZhouEmail author


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was funded by the National Natural Science Foundation of China (31930089 and 31972244), Central Public-interest Scientific Institution Basal Research Fund of China (#S2019XM16) and the Youth Talent Program of Chinese Academy of Agricultural Sciences.


  1. Dangl, J.L., Horvath, D.M., and Staskawicz, B.J. (2013). Pivoting the plant immune system from dissection to deployment. Science 341, 746–751.CrossRefGoogle Scholar
  2. Du, X., Wang, S., Gao, F., Zhang, L., Zhao, J.H., Guo, H.S., and Hua, C. (2017). Expression of pathogenesis-related genes in cotton roots in response to Verticillium dahliae PAMP molecules. Sci China Life Sci 60, 852–860.CrossRefGoogle Scholar
  3. Gnanasekaran, P., KishoreKumar, R., Bhattacharyya, D., Vinoth Kumar, R., and Chakraborty, S. (2019). Multifaceted role of geminivirus associated betasatellite in pathogenesis. Mol Plant Pathol 20, 1019–1033.CrossRefGoogle Scholar
  4. Guo, H., Wan, S., and Ge, F. (2017). Effect of elevated CO2 and O3 on phytohormone-mediated plant resistance to vector insects and insect-borne plant viruses. Sci China Life Sci 60, 816–825.CrossRefGoogle Scholar
  5. Gurr, S.J., and Rushton, P.J. (2005). Engineering plants with increased disease resistance: how are we going to express it? Trends Biotech 23, 283–290.CrossRefGoogle Scholar
  6. Kan, J., Fang, R., and Jia, Y. (2017). Interkingdom signaling in plant-microbe interactions. Sci China Life Sci 60, 785–796.CrossRefGoogle Scholar
  7. Li, F., and Wang, A. (2018). RNA decay is an antiviral defense in plants that is counteracted by viral RNA silencing suppressors. PLoS Pathog 14, e1007228.CrossRefGoogle Scholar
  8. Li, F., Yang, X., Bisaro, D.M., and Zhou, X. (2018a). The βC1 protein of geminivirus-betasatellite complexes: a target and repressor of host defenses. Mol Plant 11, 1424–1426.CrossRefGoogle Scholar
  9. Li, F., Zhang, C., Li, Y., Wu, G., Hou, X., Zhou, X., and Wang, A. (2018b). Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase. Nat Commun 9, 1268.CrossRefGoogle Scholar
  10. Li, F., and Wang, A. (2019). RNA-targeted antiviral immunity: more than just RNA silencing. Trends Microbiol 27, 792–805.CrossRefGoogle Scholar
  11. Ma, Z., Zhu, L., Song, T., Wang, Y., Zhang, Q., Xia, Y., Qiu, M., Lin, Y., Li, H., Kong, L., et al. (2017). A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science 355, 710–714.CrossRefGoogle Scholar
  12. Mangal, M., Srivastava, A., Sharma, R., and Kalia, P. (2017). Conservation and dispersion of genes conferring resistance to tomato begomoviruses between tomato and pepper genomes. Front Plant Sci 8, 1803.CrossRefGoogle Scholar
  13. Martínez-Pérez, M., Aparicio, F., López-Gresa, M.P., Bellés, J.M., Sánchez-Navarro, J.A., and Pallás, V. (2017). Arabidopsis m6A demethylase activity modulates viral infection of a plant virus and the m6 A abundance in its genomic RNAs. Proc Natl Acad Sci USA 114, 10755–10760.CrossRefGoogle Scholar
  14. Muhammad, T., Zhang, F., Zhang, Y., and Liang, Y. (2019). RNA interference: a natural immune system of plants to counteract biotic stressors. Cells 8, 38.CrossRefGoogle Scholar
  15. Na, R., and Gijzen, M. (2016). Escaping host immunity: new tricks for plant pathogens. PLoS Pathog 12, e1005631.CrossRefGoogle Scholar
  16. Narusaka, M., Shirasu, K., Noutoshi, Y., Kubo, Y., Shiraishi, T., Iwabuchi, M., and Narusaka, Y. (2009). RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacterial pathogens. Plant J 60, 218–226.CrossRefGoogle Scholar
  17. Qian, W., Chen, X., Fang, R., and Kang, L. (2017). Manipulation of biotic signaling: a new theory for smarter pest control. Sci China Life Sci 60, 781–784.CrossRefGoogle Scholar
  18. Wang, A. (2015). Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol 53, 45–66.CrossRefGoogle Scholar
  19. Wang, W., Sun, Y., Han, L., Su, L., Xia, G., and Wang, H. (2017). Overexpression of GhPFN2 enhances protection against Verticillium dahliae invasion in cotton. Sci China Life Sci 60, 861–867.CrossRefGoogle Scholar
  20. Xu, Z., Xu, X., Gong, Q., Li, Z., Li, Y., Wang, S., Yang, Y., Ma, W., Liu, L., Zhu, B., et al. (2019.) Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Mol Plant..Google Scholar
  21. Zhu, M., Jiang, L., Bai, B., Zhao, W., Chen, X., Li, J., Liu, Y., Chen, Z., Wang, B., Wang, C., et al. (2017). The intracellular immune receptor sw-5b confers broad-spectrum resistance to tospoviruses through recognition of a conserved 21-amino acid viral effector epitope. Plant Cell 29, 2214–2232.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
  2. 2.State Key Laboratory of Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouChina

Personalised recommendations