Advertisement

Three paternally imprinted regions are sequentially required in prenatal and postnatal mouse development

  • Max Jiahua Li
  • Xiajun LiEmail author
Research Highlight
  • 9 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work in the authors’ laboratory is currently supported by the grant from Ministry of Science and Technology of China (2018YFC1005004 to XL) and Science and Technology Commission of Shanghai Municipality (18PJ1407700 to XL).

References

  1. Barlow, D.P., and Bartolomei, M.S. (2014). Genomic imprinting in mammals. Cold Spring Harb Perspect Biol 6.CrossRefGoogle Scholar
  2. Brambilla, R., Gnesutta, N., Minichiello, L., White, G., Roylance, A.J., Herron, C.E., Ramsey, M., Wolfer, D.P., Cestari, V., Rossi-Arnaud, C., et al. (1997). A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature 390, 281–286.CrossRefGoogle Scholar
  3. Fasano, S., Bezard, E., D’Antoni, A., Francardo, V., Indrigo, M., Qin, L., Doveró, S., Cerovic, M., Cenci, M.A., and Brambilla, R. (2010). Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with L-dopa-induced dyskinesia. Proc Natl Acad Sci USA 107, 21824–21829.CrossRefGoogle Scholar
  4. Itier, J.M., Tremp, G.L., Léonard, J.F., Multon, M.C., Ret, G., Schweighoffer, F., Tocqué, B., Bluet-Pajot, M.T., Cormier, V., and Dautry, F. (1998). Imprinted gene in postnatal growth role. Nature 393, 125–126.CrossRefGoogle Scholar
  5. Kawahara, M., Wu, Q., Takahashi, N., Morita, S., Yamada, K., Ito, M., Ferguson-Smith, A.C., and Kono, T. (2007). High-frequency generation of viable mice from engineered bi-maternal embryos. Nat Biotechnol 25, 1045–1050.CrossRefGoogle Scholar
  6. Kono, T., Obata, Y., Wu, Q., Niwa, K., Ono, Y., Yamamoto, Y., Park, E.S., Seo, J.S., and Ogawa, H. (2004). Birth of parthenogenetic mice that can develop to adulthood. Nature 428, 860–864.CrossRefGoogle Scholar
  7. Li, Q., Li, Y., Yin, Q., Huang, S., Wang, K., Zhuo, L., Li, W., Chang, B., and Li, J. (2019). Temporal regulation of prenatal embryonic development by paternal imprinted loci. Sci China Life Sci 62.Google Scholar
  8. Li, W., Shuai, L., Wan, H., Dong, M., Wang, M., Sang, L., Feng, C., Luo, G.Z., Li, T., Li, X., et al. (2012). Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature 490, 407–411.CrossRefGoogle Scholar
  9. Li, X. (2013). Genomic imprinting is a parental effect established in mammalian germ cells. Curr Top Dev Biol 102, 35–59.CrossRefGoogle Scholar
  10. Li, Z.K., Wang, L.Y., Wang, L.B., Feng, G.H., Yuan, X.W., Liu, C., Xu, K., Li, Y.H., Wan, H.F., Zhang, Y., et al. (2018). Generation of bimaternal and bipaternal mice from hypomethylated haploid ESCs with imprinting region deletions. Cell Stem Cell 23, 665–676.e4.CrossRefGoogle Scholar
  11. Lin, S.P., Youngson, N., Takada, S., Seitz, H., Reik, W., Paulsen, M., Cavaille, J., and Ferguson-Smith, A.C. (2003). Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet 35, 97–102.CrossRefGoogle Scholar
  12. MacDonald, W.A., and Mann, M.R.W. (2014). Epigenetic regulation of genomic imprinting from germ line to preimplantation. Mol Reprod Dev 81, 126–140.CrossRefGoogle Scholar
  13. McGrath, J., and Solter, D. (1984). Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183.CrossRefGoogle Scholar
  14. Monk, D., Mackay, D.J.G., Eggermann, T., Maher, E.R., and Riccio, A. (2019). Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet 20, 235–248.CrossRefGoogle Scholar
  15. Surani, M.A.H., Barton, S.C., and Norris, M.L. (1984). Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548–550.CrossRefGoogle Scholar
  16. Thorvaldsen, J.L., Duran, K.L., and Bartolomei, M.S. (1998). Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev 12, 3693–3702.CrossRefGoogle Scholar
  17. Yang, H., Shi, L., Wang, B.A., Liang, D., Zhong, C., Liu, W., Nie, Y., Liu, J., Zhao, J., Gao, X., et al. (2012). Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149, 605–617.CrossRefGoogle Scholar
  18. Zhong, C., Xie, Z., Yin, Q., Dong, R., Yang, S., Wu, Y., Yang, L., and Li, J. (2016). Parthenogenetic haploid embryonic stem cells efficiently support mouse generation by oocyte injection. Cell Res 26, 131–134.CrossRefGoogle Scholar
  19. Zhong, C., Yin, Q., Xie, Z., Bai, M., Dong, R., Tang, W., Xing, Y-H, Zhang, H., Yang, S., Chen, L-L, et al. (2015). CRISPR-Cas9-mediated genetic screening in mice with haploid embryonic stem cells carrying a guide RNA library. Cell Stem Cell 17, 221–232.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Life Sciences and TechnologyShanghaiTech UniversityShanghaiChina

Personalised recommendations