Advertisement

Nanozymes: an emerging field bridging nanotechnology and enzymology

  • Xiangqin Meng
  • Kelong FanEmail author
  • Xiyun YanEmail author
Insight
  • 14 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the Strategic Priority Research Program (XDB29040101), the National Natural Science Foundation of China (31900981, 31871005, 31530026), Chinese Academy of Sciences (YJKYYQ20180048), the Key Research Program of Frontier Sciences (QYZDY-SSW-SMC013), Chinese Academy of Sciences and National Key Research and Development Program of China (2017YFA0205200), and Youth Innovation Promotion Association CAS (2019093).

References

  1. Celardo, I., Pedersen, J.Z., Traversa, E., and Ghibelli, L. (2011). Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3, 1411–1420.CrossRefGoogle Scholar
  2. Fan, K., Wang, H., Xi, J., Liu, Q., Meng, X., Duan, D., Gao, L., and Yan, X. (2016). Optimization of Fe3 O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem Commun 53, 424–427.CrossRefGoogle Scholar
  3. Fan, K., Xi, J., Fan, L., Wang, P., Zhu, C., Tang, Y., Xu, X., Liang, M., Jiang, B., Yan, X., et al. (2018). In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun 9, 1440.CrossRefGoogle Scholar
  4. Fang, G., Li, W., Shen, X., Perez-Aguilar, J.M., Chong, Y., Gao, X., Chai, Z., Chen, C., Ge, C., and Zhou, R. (2018). Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat Commun 9, 129.CrossRefGoogle Scholar
  5. Gao, L., and Yan, X. (2016). Nanozymes: an emerging field bridging nanotechnology and biology. Sci China Life Sci 59, 400–402.CrossRefGoogle Scholar
  6. Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett, S., et al. (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotech 2, 577–583.CrossRefGoogle Scholar
  7. Hafez, M.E., Ma, H., Ma, W., and Long, Y.T. (2019). Unveiling the intrinsic catalytic activities of single-gold-nanoparticle-based enzyme mimetics. Angew Chem Int Ed 58, 6327–6332.CrossRefGoogle Scholar
  8. Hameed, S., Bhattarai, P., and Dai, Z. (2018). Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment. Sci China Life Sci 61, 380–391.CrossRefGoogle Scholar
  9. Huang, Y., Ren, J., and Qu, X. (2019a). Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119, 4357–4412.CrossRefGoogle Scholar
  10. Huang, L., Chen, J., Gan, L., Wang, J., and Dong, S. (2019b). Single-atom nanozymes. Sci Adv 5, eaav5490.CrossRefGoogle Scholar
  11. Komkova, M.A., Karyakina, E.E., and Karyakin, A.A. (2018). Catalytically synthesized Prussian Blue nanoparticles defeating natural enzyme Peroxidase. J Am Chem Soc 140, 11302–11307..CrossRefGoogle Scholar
  12. Liu, Y., Zheng, Y., Ding, D., and Guo, R. (2017). Switching peroxidase-mimic activity of protein stabilized platinum nanozymes by sulfide ions: substrate dependence, mechanism, and detection. Langmuir 33, 13811–13820.CrossRefGoogle Scholar
  13. Long, Y.J., Li, Y.F., Liu, Y., Zheng, J.J., Tang, J., and Huang, C.Z. (2011). Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem Commun 47, 11939–11941.CrossRefGoogle Scholar
  14. Luo, W., Zhu, C., Su, S., Li, D., He, Y., Huang, Q., and Fan, C. (2010). Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 4, 7451–7458.CrossRefGoogle Scholar
  15. Mu, J., Li, J., Zhao, X., Yang, E.C., and Zhao, X.J. (2016). Cobalt-doped graphitic carbon nitride with enhanced peroxidase-like activity for wastewater treatment. RSC Adv 6, 35568–35576.CrossRefGoogle Scholar
  16. Ragg, R., Tahir, M.N., and Tremel, W. (2016). Solids Go Bio: inorganic nanoparticles as enzyme mimics. Eur J Inorg Chem 2016(13–14), 1906–1915.CrossRefGoogle Scholar
  17. Ran, W., and Xue, X. (2018). Theranostical application of nanomedicine for treating central nervous system disorders. Sci China Life Sci 61, 392–399.CrossRefGoogle Scholar
  18. Shah, J., Purohit, R., Singh, R., Karakoti, A.S., and Singh, S. (2015). ATP-enhanced peroxidase-like activity of gold nanoparticles. J Colloid Interface Sci 456, 100–107.CrossRefGoogle Scholar
  19. Shen, X., Liu, W., Gao, X., Lu, Z., Wu, X., and Gao, X. (2015). Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J Am Chem Soc 137, 15882–15891.CrossRefGoogle Scholar
  20. Sun, H., Zhao, A., Gao, N., Li, K., Ren, J., and Qu, X. (2015). Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew Chem Int Ed 54, 7176–7180.CrossRefGoogle Scholar
  21. Wei, H., and Wang, E. (2013). Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42, 6060–6093.CrossRefGoogle Scholar
  22. Wu, J., Wang, X., Wang, Q., Lou, Z., Li, S., Zhu, Y., Qin, L., and Wei, H. (2019). Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48, 1004–1076.CrossRefGoogle Scholar
  23. Xu, C., Zhao, C., Li, M., Wu, L., Ren, J., and Qu, X. (2014). Artificial evolution of graphene oxide chemzyme with enantioselectivity and near-infrared photothermal effect for cascade biocatalysis reactions. Small 10, 1841–1847.CrossRefGoogle Scholar
  24. Zhang, J., Zhuang, J., Gao, L., Zhang, Y., Gu, N., Feng, J., Yang, D., Zhu, J., and Yan, X. (2008). Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 73, 1524–1528.CrossRefGoogle Scholar
  25. Zhang, H., Liu, X.L., Zhang, Y.F., Gao, F., Li, G.L., He, Y., Peng, M.L., and Fan, H.M. (2018a). Magnetic nanoparticles based cancer therapy: current status and applications. Sci China Life Sci 61, 400–414.CrossRefGoogle Scholar
  26. Zhang, Y., Yu, J., Qiang, L., and Gu, Z. (2018b). Nanomedicine for obesity treatment. Sci China Life Sci 61, 373–379.CrossRefGoogle Scholar
  27. Zhou, Y., Sun, H., Xu, H., Matysiak, S., Ren, J., and Qu, X. (2018). Mesoporous encapsulated chiral nanogold for use in enantioselective reactions. Angew Chem Int Ed 57, 16791–16795.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingChina
  2. 2.CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  3. 3.Joint Laboratory of Nanozymes in Zhengzhou University, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina

Personalised recommendations