Advertisement

Characterization of a LAL-type regulator NemR in nemadectin biosynthesis and its application for increasing nemadectin production in Streptomyces cyaneogriseus

  • Chuang Li
  • Hairong He
  • Jiabin Wang
  • Hui Liu
  • Haiyan Wang
  • Yajie Zhu
  • Xiangjing Wang
  • Yanyan ZhangEmail author
  • Wensheng XiangEmail author
Research Paper

Abstract

Nemadectin, a macrocyclic lactone antibiotic, is produced by Streptomyces cyaneogriseus ssp. noncyanogenus. A methoxime derivative of nemadectin, moxdectin, has been widely used to control insect and helminth in animal health. Despite the importance of nemadectin, little attention has been paid to the regulation of nemadectin biosynthesis, which has hindered efforts to improve nemadectin production via genetic manipulation of regulatory genes. Here, we characterize the function of nemR, the cluster-situated regulatory gene encoding a LAL-family transcriptional regulator, in the nemadectin biosynthesis gene cluster of S. cyaneogriseus ssp. noncyanogenus NMWT1. NemR is shown to be essential for nemadectin production and found to directly activate the transcription of nemA1-1/A1-2/A2, nemC and nemA4/A3/E/D operons, but indirectly activate that of nemG and nemF. A highly conserved sequence 5′-TGGGGTGKATAGGGGGTA-3′ (K=T/G) is verified to be essential for NemR binding. Moreover, four novel targets of NemR, including genes encoding an SsgA-like protein (TU94_12730), a methylmalonyl-CoA mutase (TU94_19950), a thioesterase of oligomycin biosynthesis (TU94_22425) and a MFS family transporter (TU94_24835) are identified. Overexpression of nemR significantly increased nemadectin production by 79.9%, in comparison with NMWT1, suggesting that nemR plays an important role in the nemadectin biosynthesis.

Keywords

nemadectin Streptomyces cyaneogriseus ssp. noncyanogenus nemR LAL overexpression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31372006 and 31401814). We are grateful to Prof. Mervyn Bibb (John Innes Centre, Norwich, UK) for providing S. coelicolor M1146, Prof. Mark Buttner (John Innes Centre, Norwich, UK) for providing pIJ10500 and Prof. Yinhua Lu (Institute of Plant Physiology and Ecology, CAcademy of Sciences, Shanghai, China) for providing pKCcas9dO.

Supplementary material

11427_2018_9442_MOESM1_ESM.docx (782 kb)
Supplementary material, approximately 783 KB.

References

  1. Afzal, J., Burke, A.B., Batten, P.L., DeLay, R.L., and Miller, P. (1997). Moxidectin: metabolic fate and blood pharmacokinetics of 14C-labeled moxidectin in horses. J Agric Food Chem 45, 3627–3633.CrossRefGoogle Scholar
  2. Carter, G.T., Nietsche, J.A., and Borders, D.B. (1987). Structure determination of LL-F28249α, β, γ, and λ, potent antiparasitic macrolides from Streptomyces cyaneogriseus ssp. noncyanogenus. J Chem Soc Chem Commun 402–404.Google Scholar
  3. Carter, G.T., Nietsche, J.A., Hertz, M.R., Williams, D.R., Siegel, M.M., Morton, G.O., James, J.C., and Borders, D.B. (1988). LL-F28249 antibiotic complex: a new family of antiparasitic macrocyclic lactones. Isolation, characterization and structures of LL-F28249 alpha, beta, gamma, lambda. J Antibiot 41, 519–529.Google Scholar
  4. Chaleff, D.T., Huang, C., Ruppen, M.E., and Stephens, J. (2008). Cloning genes from Streptomyces cyaneogriseus subsp. noncyanogenus for biosynthesis of antibiotics and methods of use. US Patent, Application 20050003409.Google Scholar
  5. Dupuy, J., Larrieu, G., Sutra, J.F., Lespine, A., and Alvinerie, M. (2003). Enhancement of moxidectin bioavailability in lamb by a natural flavonoid: quercetin. Vet Parasitol 112, 337–347.CrossRefGoogle Scholar
  6. Guan, F., Pan, Y., Li, J., and Liu, G. (2017). A GATA-type transcription factor AcAREB for nitrogen metabolism is involved in regulation of cephalosporin biosynthesis in Acremonium chrysogenum. Sci China Life Sci 60, 958–967.CrossRefGoogle Scholar
  7. Guo, J., Zhao, J., Li, L., Chen, Z., Wen, Y., and Li, J. (2010). The pathwayspecific regulator AveR from Streptomyces avermitilis positively regulates avermectin production while it negatively affects oligomycin biosynthesis. Mol Genet Genomics 283, 123–133.CrossRefGoogle Scholar
  8. Huang, H., Zheng, G., Jiang, W., Hu, H., and Lu, Y. (2015). One-step highefficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin 47, 231–243.CrossRefGoogle Scholar
  9. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000). Practical Streptomyces Genetics. (Norwich: The John Innes Foundation).Google Scholar
  10. Kuscer, E., Coates, N., Challis, I., Gregory, M., Wilkinson, B., Sheridan, R., and Petković, H. (2007). Roles of rapH and rapG in positive regulation of rapamycin biosynthesis in Streptomyces hygroscopicus. J Bacteriol 189, 4756–4763.CrossRefGoogle Scholar
  11. Li, Y., Li, J., Tian, Z., Xu, Y., Zhang, J., Liu, W., and Tan, H. (2016). Coordinative modulation of chlorothricin biosynthesis by binding of the glycosylated intermediates and end product to a responsive regulator ChlF1. J Biol Chem 291, 5406–5417.CrossRefGoogle Scholar
  12. Li, Y., and Tan, H. (2017). Biosynthesis and molecular regulation of secondary metabolites in microorganisms. Sci China Life Sci 60, 935–938.CrossRefGoogle Scholar
  13. Liu, G., Chater, K.F., Chandra, G., Niu, G., and Tan, H. (2013). Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77, 112–143.CrossRefGoogle Scholar
  14. Liu, G., Tian, Y., Yang, H., and Tan, H. (2005). A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol Microbiol 55, 1855–1866.CrossRefGoogle Scholar
  15. Liu, P., Zhu, H., Zheng, G., Jiang, W., and Lu, Y. (2017). Metabolic engineering of Streptomyces coelicolor for enhanced prodigiosins (RED) production. Sci China Life Sci 60, 948–957.CrossRefGoogle Scholar
  16. Lu, C., Zhang, X., Jiang, M., and Bai, L. (2016). Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus. Metab Eng 35, 129–137.CrossRefGoogle Scholar
  17. MacNeil, D., Occi, J., Gewain, K., MacNeil, T., Gibbons, P., Foor, F., Morin, N., Hegeman, G., Baltz, R., and Skatrud, P. (1993). A comparison of the genes encoding the polyketide synthases for avermectin, erythromycin, and nemadectin. Ind Microorg: Basic Appl Mol Genet, 245–256.Google Scholar
  18. Mounsey, K.E., Bernigaud, C., Chosidow, O., and McCarthy, J.S. (2016). Prospects for moxidectin as a new oral treatment for human scabies. PLoS Negl Trop Dis 10, e0004389.CrossRefGoogle Scholar
  19. Mounsey, K.E., Walton, S.F., Innes, A., Cash-Deans, S., and McCarthy, J.S. (2017). In vitro efficacy of moxidectin versus ivermectin against Sarcoptes scabiei. Antimicrob Agents Chemother 61, e00381.CrossRefGoogle Scholar
  20. Myronovskyi, M., Welle, E., Fedorenko, V., and Luzhetskyy, A. (2011). β-Glucuronidase as a sensitive and versatile reporter in actinomycetes. Appl Environ Microbiol 77, 5370–5383.Google Scholar
  21. Newman, D.J., and Cragg, G.M. (2016). Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79, 629–661.CrossRefGoogle Scholar
  22. Niu, G., Zheng, J., and Tan, H. (2017). Biosynthesis and combinatorial biosynthesis of antifungal nucleoside antibiotics. Sci China Life Sci 60, 939–947.CrossRefGoogle Scholar
  23. Rugg, D., Buckingham, S.D., Sattelle, D.B., and Jansson, R.K. (2005). The insecticidal macrocyclic lactones. In Comprehensive Molecular Insect Science. (Elsevier), pp. 25–52.CrossRefGoogle Scholar
  24. Sherwood, E.J., and Bibb, M.J. (2013). The antibiotic planosporicin coordinates its own production in the actinomycete Planomonospora alba. Proc Natl Acad Sci USA 110, e2500–E2509.CrossRefGoogle Scholar
  25. Traag, B.A., Kelemen, G.H., and Van Wezel, G.P. (2004). Transcription of the sporulation gene ssgA is activated by the IclR-type regulator SsgR in a whi-independent manner in Streptomyces coelicolor A3(2). Mol Microbiol 53, 985–1000.CrossRefGoogle Scholar
  26. Tsou, H.R., Ahmed, Z.H., Fiala, R.R., Bullock, M.W., Carter, G.T., Goodman, J.J., and Borders, D.B. (1989). Biosynthetic origin of the carbon skeleton and oxygen atoms of the LL-F28249.ALPHA., apoent antiparasitic macrolide.. J Antibiot 42, 398–406.CrossRefGoogle Scholar
  27. Wang, H., Li, C., Zhang, B., He, H., Jin, P., Wang, J., Zhang, J., Wang, X., and Xiang, W. (2015). Complete genome sequence of Streptomyces cyaneogriseus ssp. noncyanogenus, the thermotolerant producer of commercial antibiotics nemadectin. J Biotechnol 204, 1–2.CrossRefGoogle Scholar
  28. Wilson, D.J., Xue, Y., Reynolds, K.A., and Sherman, D.H. (2001). Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. J Bacteriol 183, 3468–3475.CrossRefGoogle Scholar
  29. Yin, S., Wang, X., Shi, M., Yuan, F., Wang, H., Jia, X., Yuan, F., Sun, J., Liu, T., Yang, K., et al. (2017). Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus. Sci China Life Sci 60, 992–999.CrossRefGoogle Scholar
  30. Yin, S., Wang, W., Wang, X., Zhu, Y., Jia, X., Li, S., Yuan, F., Zhang, Y., and Yang, K. (2015). Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus. Microb Cell Fact 14, 46.CrossRefGoogle Scholar
  31. Zabala, D., Braña, A.F., Flórez, A.B., Salas, J.A., and Méndez, C. (2013). Engineering precursor metabolite pools for increasing production of antitumor mithramycins in Streptomyces argillaceus. Metab Eng 20, 187–197.CrossRefGoogle Scholar
  32. Zhang, P., Wu, H., Chen, X.L., Deng, Z., Bai, L., and Pang, X. (2014). Regulation of the biosynthesis of thiopeptide antibiotic cyclothiazomycin by the transcriptional regulator SHJG8833 in Streptomyces hygroscopicus 5008. Microbiology 160, 1379–1392.CrossRefGoogle Scholar
  33. Zhang, Y., He, H., Liu, H., Wang, H., Wang, X., and Xiang, W. (2016). Characterization of a pathway-specific activator of milbemycin biosynthesis and improved milbemycin production by its overexpression in Streptomyces bingchenggensis. Microb Cell Fact 15, 152.CrossRefGoogle Scholar
  34. Zhang, Y., Pan, G., Zou, Z., Fan, K., Yang, K., and Tan, H. (2013). JadR*- mediated feed-forward regulation of cofactor supply in jadomycin biosynthesis. Mol Microbiol 90, 884–897.CrossRefGoogle Scholar
  35. Zhu, Z., Li, H., Yu, P., Guo, Y., Luo, S., Chen, Z., Mao, X., Guan, W., and Li, Y. (2017). SlnR is a positive pathway-specific regulator for salinomycin biosynthesis in Streptomyces albus. Appl Microbiol Biotechnol 101, 1547–1557.CrossRefGoogle Scholar
  36. Zhuo, J., Ma, B., Xu, J., Hu, W., Zhang, J., Tan, H., and Tian, Y. (2017). Reconstruction of a hybrid nucleoside antibiotic gene cluster based on scarless modification of large DNA fragments. Sci China Life Sci 60, 968–979.CrossRefGoogle Scholar
  37. Zianni, M., Tessanne, K., Merighi, M., Laguna, R., and Tabita, F.R. (2006). Identification of the DNA bases of a DNase I footprint by the use of dye primer sequencing on an automated capillary DNA analysis instrument. J Biomol Tech 17, 103–113.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chuang Li
    • 1
    • 2
    • 3
  • Hairong He
    • 1
    • 2
  • Jiabin Wang
    • 1
    • 2
  • Hui Liu
    • 1
    • 2
  • Haiyan Wang
    • 1
  • Yajie Zhu
    • 1
  • Xiangjing Wang
    • 2
  • Yanyan Zhang
    • 1
    Email author
  • Wensheng Xiang
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
  2. 2.School of Life ScienceNortheast Agricultural UniversityHarbinChina
  3. 3.College of Food and BioengineeringQiqihar UniversityQiqiharChina

Personalised recommendations