Advertisement

The lifestyle transition of Arthrobotrys oligospora is mediated by microRNA-like RNAs

  • Xinglai Ji
  • Heng Li
  • Weihua Zhang
  • Jiai Wang
  • Lianming Liang
  • Chenggang Zou
  • Zefen Yu
  • Shuqun Liu
  • Ke-Qin ZhangEmail author
Research Paper SPECIAL TOPIC

Abstract

The lifestyle transition of fungi, defined as switching from taking organic material as nutrients to pathogens, is a fundamental phenomenon in nature. However, the mechanisms of such transition remain largely unknown. Here we show microRNA-like RNAs (milRNAs) play a key role in fungal lifestyle transition for the first time. We identified milRNAs by small RNA sequencing in Arthrobotrys oligospora, a known nematode-trapping fungus. Among them, 7 highly expressed milRNAs were confirmed by northern-blot analysis. Knocking out two milRNAs significantly decreased A. oligospora’s ability to switch lifestyles. We further identified that two of these milRNAs were associated with argonaute protein QDE-2 by RNA-immunoprecipitation (RIP) analysis. Three of the predicted target genes of milRNAs were found in immunoprecipitation (IP) products of QDE-2. Disruption of argonaute gene qde-2 also led to serious defects in lifestyle transition. Interestingly, knocking out individual milRNAs or qde-2 lead to diverse responses under different conditions, and qde-2 itself may be targeted by the milRNAs. Collectively, it indicates the lifestyle transition of fungi is mediated by milRNAs through RNA interference (RNAi) machinery, revealing the wide existence of miRNAs in fungi kingdom and providing new insights into understanding the adaptation of fungi from scavengers to predators and the mechanisms underlying fungal infections.

Keywords

lifestyle transition Arthrobotrys oligospora microRNA-like RNAs nematode-trapping fungi trap induction fungal adaptation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Basic Research Program of China (2013CB127500), the National Natural Science Foundation of China (31160021, 31270131 and U1502262) and sponsored by the Nanjing University of Posts and Telecommunications Scientific Foundation (NUPTSF) (NY218140) and a grant (2018KF003) from YNCUB. We thank BGI-Shenzhen who contributed to the small RNA sequencing projects. We thank H. Yin for comments and discussion.

Supplementary material

11427_2018_9437_MOESM1_ESM.doc (4.4 mb)
Supplementary material, approximately 4556 KB.

References

  1. Allen, E., Xie, Z., Gustafson, A.M., and Carrington, J.C. (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221.Google Scholar
  2. Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350–355.CrossRefGoogle Scholar
  3. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.CrossRefGoogle Scholar
  4. Betel, D., Koppal, A., Agius, P., Sander, C., and Leslie, C. (2010). Comprehensive modeling of microRNA targets predicts functional nonconserved and non-canonical sites. Genome Biol 11, R90.Google Scholar
  5. Boyce, K.J., and Andrianopoulos, A. (2015). Fungal dimorphism: the switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host. FEMS Microbiol Rev 39, 797–811.CrossRefGoogle Scholar
  6. Colot, H.V., Park, G., Turner, G.E., Ringelberg, C., Crew, C.M., Litvinkova, L., Weiss, R.L., Borkovich, K.A., and Dunlap, J.C. (2006). A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA 103, 10352–10357.CrossRefGoogle Scholar
  7. Dang, Y., Yang, Q., Xue, Z., and Liu, Y. (2011). RNA interference in fungi: pathways, functions, and applications. Eukaryotic Cell 10, 1148–1155.CrossRefGoogle Scholar
  8. Denman, R.B. (1993). Using RNAFOLD to predict the activity of small catalytic RNAs. Biotechniques 15, 1090–1095.Google Scholar
  9. Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S.L., and Gurr, S.J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194.CrossRefGoogle Scholar
  10. Friedländer, M.R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., and Rajewsky, N. (2008). Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26, 407–415.CrossRefGoogle Scholar
  11. Friedman, R.C., Farh, K.K.H., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19, 92–105.CrossRefGoogle Scholar
  12. Gauthier, G.M. (2015). Dimorphism in fungal pathogens of mammals, plants, and insects. PLoS Pathog 11, e1004608.CrossRefGoogle Scholar
  13. Gursinsky, T., Pirovano, W., Gambino, G., Friedrich, S., Behrens, S.E., and Pantaleo, V. (2015). Homeologs of the Nicotiana benthamiana antiviral ARGONAUTE1 show different susceptibilities to microRNA168-mediated control. Plant Physiol 168, 938–952.CrossRefGoogle Scholar
  14. Hendrix, D., Levine, M., and Shi, W. (2010). miRTRAP, a computational method for the systematic identification of miRNAs from high throughput sequencing data. Genome Biol 11, R39.CrossRefGoogle Scholar
  15. Holbrook, E.D., and Rappleye, C.A. (2008). Histoplasma capsulatum pathogenesis: making a lifestyle switch. Curr Opin Microbiol 11, 318–324.CrossRefGoogle Scholar
  16. Hutvagner, G., and Simard, M.J. (2008). Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9, 22–32.CrossRefGoogle Scholar
  17. Ji, L., Liu, X., Yan, J., Wang, W., Yumul, R.E., Kim, Y.J., Dinh, T.T., Liu, J., Cui, X., Zheng, B., et al. (2011). ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet 7, e1001358.CrossRefGoogle Scholar
  18. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., and Segal, E. (2007). The role of site accessibility in microRNA target recognition. Nat Genet 39, 1278–1284.CrossRefGoogle Scholar
  19. Krüger, J., and Rehmsmeier, M. (2006). RNAhybrid: microRNA target prediction easy, fast and flexible. Nucl Acids Res 34, W451–W454.Google Scholar
  20. Lee, H.C., Li, L., Gu, W., Xue, Z., Crosthwaite, S.K., Pertsemlidis, A., Lewis, Z.A., Freitag, M., Selker, E.U., Mello, C.C., et al. (2010). Diverse pathways generate microRNA-like RNAs and Dicerindependent small interfering RNAs in fungi. Mol Cell 38, 803–814.CrossRefGoogle Scholar
  21. Li, Y., Zhang, Z., Liu, F., Vongsangnak, W., Jing, Q., and Shen, B. (2012). Performance comparison and evaluation of software tools for microRNA deep-sequencing data analysis. Nucl Acids Res 40, 4298–4305.CrossRefGoogle Scholar
  22. Loher, P., and Rigoutsos, I. (2012). Interactive exploration of RNA22 microRNA target predictions. Bioinformatics 28, 3322–3323.CrossRefGoogle Scholar
  23. Mallory, A., and Vaucheret, H. (2010). Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22, 3879–3889.CrossRefGoogle Scholar
  24. Margolin, B.S., Freitag, M., and Selker, E.U. (1997). Improved plasmids for gene targeting at the his-3 locus of Neurospora crassa by electroporation. Fungal Genets Rep 44, 34–36.CrossRefGoogle Scholar
  25. Meerupati, T., Andersson, K.M., Friman, E., Kumar, D., Tunlid, A., and Ahrén, D. (2013). Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi. PLoS Genet 9, e1003909.CrossRefGoogle Scholar
  26. O’Connell, R.J., Thon, M.R., Hacquard, S., Amyotte, S.G., Kleemann, J., Torres, M.F., Damm, U., Buiate, E.A., Epstein, L., Alkan, N., et al. (2012). Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44, 1060–1065.CrossRefGoogle Scholar
  27. Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. (2002). Prediction of plant microRNA targets. Cell 110, 513–520.CrossRefGoogle Scholar
  28. Seitz, H., Tushir, J.S., and Zamore, P.D. (2011). A 5′-uridine amplifies miRNA/miRNA* asymmetry in Drosophila by promoting RNAinduced silencing complex formation. Silence 2, 4.CrossRefGoogle Scholar
  29. Várallyay, E., Válóczi, A., Agyi, A., Burgyán, J., and Havelda, Z. (2010). Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J 29, 3507–3519.CrossRefGoogle Scholar
  30. Wang, X., Li, G., Zou, C., Ji, X., Liu, T., Zhao, P., Liang, L., Xu, J., An, Z., Zheng, X., et al. (2014). Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nat Commun 5, 5776.CrossRefGoogle Scholar
  31. Xian, Z., Huang, W., Yang, Y., Tang, N., Zhang, C., Ren, M., and Li, Z. (2014). miR168 influences phase transition, leaf epinasty, and fruit development via SlAGO1s in tomato. J Exp Bot 65, 6655–6666.Google Scholar
  32. Yang, J., Wang, L., Ji, X., Feng, Y., Li, X., Zou, C., Xu, J., Ren, Y., Mi, Q., Wu, J., et al. (2011). Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog 7, e1002179.CrossRefGoogle Scholar
  33. Zhang, K.Q., and Hyde, K.D. (2014). Nematode-Trapping Fungi (Heidelberg: Springer).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xinglai Ji
    • 1
    • 2
  • Heng Li
    • 1
    • 3
  • Weihua Zhang
    • 1
  • Jiai Wang
    • 1
  • Lianming Liang
    • 1
  • Chenggang Zou
    • 1
  • Zefen Yu
    • 1
  • Shuqun Liu
    • 1
  • Ke-Qin Zhang
    • 1
    Email author
  1. 1.State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanYunnan UniversityKunmingChina
  2. 2.Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu ProvinceNanjing University of Posts and TelecommunicationsNanjingChina
  3. 3.Institute of Medical BiologyChinses Academy of Medical Sciences & Peking Union Medical CollegeKunmingChina

Personalised recommendations