Advertisement

Science China Life Sciences

, Volume 61, Issue 12, pp 1589–1592 | Cite as

Advances in quantitative assessment of parkinsonian motor symptoms with wearable devices

  • Xiaoli Zhong
  • Jingxue Zheng
  • Qinyong YeEmail author
Insight
  • 11 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Joint Funds for the innovation of Science and Technology, Fuian province (2017Y9010) & the National Natural Science Foundation of China (81671265).

References

  1. Cai, G., Lin, Z., Dai, H., Xia, X., Xiong, Y., Horng, S.J., and Lueth, T.C. (2018). Quantitative assessment of Parkinsonian tremor based on a linear acceleration extraction algorithm. BioMed Signal Processing Control 42, 53–62.CrossRefGoogle Scholar
  2. Coy, J.A., Pfeiffer, J.H., Krieger, Y.S., Mehrkens, J.H., Botzel, B.K., Lueth, T.C. (2016). Mechatronic device for the optimization of the DBS-electrode placement. 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). Singapore: IEEE 214–219.Google Scholar
  3. Dai, H., Xiong, Y., Cai, G., Xia, X., and Lin, Z. (2018). Parkinson’s Muscle stiffness quantitative monitoring system based on mechanical impedance measurement. Journal of Biomedical Engineering 35: 421–428.Google Scholar
  4. Dong, Z.F., Wang, C.S., Zhang, Y.C., Zhang, Y., Sheng, Y.J., Hu, H., Luo, W.F., and Liu, C.F. (2017). Transcranial sonographic alterations of substantia nigra and third ventricle in Parkinson’s disease with or without dementia. Chin Med J 130, 2291–2295.CrossRefGoogle Scholar
  5. Du, J.J., and Chen, S.D. (2017). Current nondopaminergic therapeutic options for motor symptoms of Parkinson’s disease. Chin Med J 130, 1856–1866.CrossRefGoogle Scholar
  6. Gao, J., He, W., Du, L.J., Li, S., Cheng, L.G., Shih, G., and Rubin, J. (2016). Ultrasound strain elastography in assessment of resting biceps brachii muscle stiffness in patients with Parkinson’s disease: a primary observation. Clinical Imag 40, 440–444.CrossRefGoogle Scholar
  7. Griffiths, R.I., Kotschet, K., Arfon, S., Xu, Z.M., Johnson, W., Drago, J., Evans, A., Kempster, P., Raghav, S., and Horne, M.K. (2012). Automated assessment of bradykinesia and dyskinesia in Parkinson’s disease. J Parkinsons Dis 2, 47–55, doi: 10.3233/JPD-2012-11071.Google Scholar
  8. Giuffrida, J.P., Riley, D.E., Maddux, B.N., and Heldman, D.A. (2009). Clinically deployable Kinesia™ technology for automated tremor assessment. Mov Disord 24, 723–730.CrossRefGoogle Scholar
  9. Kwon, Y., Park, S.H., Kim, J.W., Ho, Y., Jeon, H.M., Bang, M.J., Koh, S. B., Kim, J.H., and Eom, G.M. (2014). Quantitative evaluation of parkinsonian rigidity during intra-operative deep brain stimulation. BioMed Mater Eng 24, 2273–2281, doi: 10.3233/BME-141040.Google Scholar
  10. Li, L., Liu, M.S., Li, G.Q., Tang, J., Liao, Y., Zheng, Y., Guo, T.L., Kang, X., and Yuan, M.T. (2017). Relationship between apolipoprotein superfamily and Parkinson’s disease. Chin Med J 130, 2616–2623.CrossRefGoogle Scholar
  11. Li, Y., Wang, S.M., Guo, L., Zhu, J., Wang, Y., Li, L., and Zhao, Y.X. (2017). Effects of melatonin levels on neurotoxicity of the medial prefrontal cortex in a rat model of Parkinson’s disease. Chin Med J 130, 2726–2731.CrossRefGoogle Scholar
  12. Lin, Z., Xiong, Y., Cai, G., Dai, H., Xia, X., Tan, Y., and Lueth, T.C. (2018). Quantification of Parkinsonian bradykinesia based on axis-angle representation and SVM multiclass classification method. IEEE Access 6, 26895–26903.CrossRefGoogle Scholar
  13. Lopane, G., Mellone, S., Chiari, L., Cortelli, P., Calandra-Buonaura, G., and Contin, M. (2015). Dyskinesia detection and monitoring by a single sensor in patients with Parkinson’s disease. Mov Disord 30, 1267–1271.CrossRefGoogle Scholar
  14. Shaeffer, D.K. (2013). MEMS inertial sensors: a tutorial overview. IEEE Commun Mag 51, 100–109.CrossRefGoogle Scholar
  15. Timmer, J., Haussler, S., Lauk, M., and Lucking, C.H. (2000). Pathological tremors: Deterministic chaos or nonlinear stochastic oscillators? Chaos 10, 278–288.CrossRefGoogle Scholar
  16. Wang, Y., Shen, Y., Xiong, K.P., He, P.C., Mao, C.J., Li, J., Wang, F.Y., Wang, Y.L., Huang, J.Y., and Liu, C.F. (2017). Tonic electromyogram density in multiple system atrophy with predominant Parkinsonism and Parkinson’s disease. Chin Med J 130, 684.CrossRefGoogle Scholar
  17. Zhang, J.R., Chen, J., Yang, Z.J., Zhang, H.J., Fu, Y.T., Shen, Y., He, P.C., Mao, C.J., and Liu, C.F. (2016). Rapid eye movement sleep behavior disorder symptoms correlate with domains of cognitive impairment in Parkinson’s disease. Chin Med J 129, 379.CrossRefGoogle Scholar
  18. Zhao, Y., Ramesberger, S., Fietzek, U.M., D′Angelo, L.T., and Lueth, T.C. (2013). A novel wearable laser device to regulate stride length in Parkinson’s disease. 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka: IEEE 5895–5898, doi: 10.1109/EMBC.2013.6610893.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurology, Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhouChina
  2. 2.Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina

Personalised recommendations