Advertisement

Genome-wide analysis identified 17 new loci influencing intraocular pressure in Chinese population

  • Lulin HuangEmail author
  • Yuhong Chen
  • Ying Lin
  • Pancy O. S. Tam
  • Yilian Cheng
  • Yi Shi
  • Bo Gong
  • Fang Lu
  • Jialiang Yang
  • Haixin Wang
  • Yi Yin
  • Yong Cao
  • Dan Jiang
  • Ling Zhong
  • Bai Xue
  • Jing Wang
  • Fang Hao
  • Dean-Yao Lee
  • Chi-Pui Pang
  • Xinghuai Sun
  • Zhenglin YangEmail author
Cover Article

Abstract

Intraocular pressure (IOP) is a major risk factor for glaucoma. Genetic determinants of intraocular pressure can provide critical insights into the genetic architecture of glaucoma and, as a result, open new avenues for therapeutic intervention. We performed a genome-wide association study and replication analysis of 8,552 Chinese participants. In the genome-wide association study, we identified 51 loci that surpassed the significance of P<9×10−7, and we formally replicated these loci. A combined discovery and replication meta-analysis identified 21 genome-wide loci that surpassed the genome-wide significance of P<5×10−8, including 4 previously reported loci: rs145063132 (7p21.2, ETV1/DGKB), rs548030386 (7q31.2, ST7 near CAV1/CAV2), rs7047871 (9p24.2, GLIS3), and rs2472494 (9q31.1, ABCA1/SLC44A1). Of the 17 newly identified loci, five were reported to have ocular related phenotypes: PTCH2 (rs7525308 in 1p34.1), LRIF1/DRAM2 (rs1282146 in 1p13.3), COLEC11 (rs201143466 in 2p25.3), SPTBN1 (rs4514918 in 2p16.2), and CRK (rs11078446 in 17p13.3). The genetic loci identified in this study not only increase our understanding of the genes involved in intraocular pressure but also provide important genetic markers to improve future genetic screening and drug discovery for intraocular pressure disorders.

Keywords

intraocular pressure glaucoma genome-wide association study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Precision Medicine Project (2016YFC0905200 and 2017YFC0907302); the National Natural Science Foundation of China (81430008, 81790643, 81300802, 81670895, 81670853, 81570888 and 81870683); the Department of Science and Technology of Sichuan Province, China (2014SZ0169, 2015SZ0052, 2014FZ0124, 2015JQO057, 2017JQ0024, 2016HH0072, 2013JY0195 and 2016JQ0026); High-level Talents Program of UESTC (Y03001023601021016) and the Top-Notch Young Talents Program of China (Y.S.). We thank all of the individuals for participating in this study.

Supplementary material

11427_2018_9430_MOESM1_ESM.pdf (301 kb)
Supplementary material, approximately 302 KB.
11427_2018_9430_MOESM2_ESM.docx (15 kb)
Supplementary material, approximately 16 KB.
11427_2018_9430_MOESM3_ESM.docx (19 kb)
Supplementary material, approximately 19 KB.
11427_2018_9430_MOESM4_ESM.docx (645 kb)
Supplementary material, approximately 645 KB.
11427_2018_9430_MOESM5_ESM.docx (25 kb)
Supplementary material, approximately 26 KB.
11427_2018_9430_MOESM6_ESM.docx (15 kb)
Supplementary material, approximately 15 KB.
11427_2018_9430_MOESM7_ESM.docx (16 kb)
Supplementary material, approximately 17 KB.

References

  1. Acott, T.S., and Kelley, M.J. (2008). Extracellular matrix in the trabecular meshwork. Exp Eye Res 86, 543–561.CrossRefGoogle Scholar
  2. Bailey, J.N.C., Loomis, S.J., Kang, J.H., Allingham, R.R., Gharahkhani, P., Khor, C.C., Burdon, K.P., Aschard, H., Chasman, D.I., Igo, R.P., et al. (2016). Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat Genet 48, 189–194.CrossRefGoogle Scholar
  3. Birtel, J., Eisenberger, T., Gliem, M., Müller, P.L., Herrmann, P., Betz, C., Zahnleiter, D., Neuhaus, C., Lenzner, S., Holz, F.G., et al. (2018). Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci Rep 8, 4824.CrossRefGoogle Scholar
  4. Boland, M.V., Ervin, A.M., Friedman, D.S., Jampel, H.D., Hawkins, B.S., Vollenweider, D., Chelladurai, Y., Ward, D., Suarez-Cuervo, C., and Robinson, K.A. (2013). Comparative effectiveness of treatments for open-angle glaucoma: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med 158, 271.Google Scholar
  5. Bulik-Sullivan, B.K., Loh, P.R., Finucane, H.K., Ripke, S., Yang, J., Yang, J., Patterson, N., Daly, M.J., Price, A.L., and Neale, B.M. (2015). LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47, 291–295.CrossRefGoogle Scholar
  6. Caspers, M., Czogalla, K.J., Liphardt, K., Müller, J., Westhofen, P., Watzka, M., and Oldenburg, J. (2015). Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse: VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain. Thrombosis Res 135, 977–983.CrossRefGoogle Scholar
  7. Chen, C.S., Alonso, J.L., Ostuni, E., Whitesides, G.M., and Ingber, D.E. (2003). Cell shape provides global control of focal adhesion assembly. Biochem Biophys Res Commun 307, 355–361.CrossRefGoogle Scholar
  8. Chen, Y., Lin, Y., Vithana, E.N., Jia, L., Zuo, X., Wong, T.Y., Chen, L.J., Zhu, X., Tam, P.O.S., Gong, B., et al. (2014). Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma. Nat Genet 46, 1115–1119.CrossRefGoogle Scholar
  9. Choquet, H., Thai, K.K., Yin, J., Hoffmann, T.J., Kvale, M.N., Banda, Y., Schaefer, C., Risch, N., Nair, K.S., Melles, R., et al. (2017). A large multi-ethnic genome-wide association study identifies novel genetic loci for intraocular pressure. Nat Commun 8, 2108.CrossRefGoogle Scholar
  10. Cimbalistiene, L., Lehnert, W., Huoponen, K., and Kucinskas, V. (2007). First reported case of lysinuric protein intolerance (LPI) in Lithuania, confirmed biochemically and by DNA analysis. J Appl Genet 48, 277–280.CrossRefGoogle Scholar
  11. Collaborative Normal-Tension Glaucoma Study Group. (1998). The effectiveness of intraocular pressure reduction in the treatment of normaltension glaucoma. Am J Ophthalmol 126, 498–505.CrossRefGoogle Scholar
  12. Collins, T.N., Mao, Y., Li, H., Bouaziz, M., Hong, A., Feng, G.S., Wang, F., Quilliam, L.A., Chen, L., Park, T., et al. (2018). Crk proteins transduce FGF signaling to promote lens fiber cell elongation. eLife 7, e32586.CrossRefGoogle Scholar
  13. Das, S., Forer, L., Schönherr, S., Sidore, C., Locke, A.E., Kwong, A., Vrieze, S.I., Chew, E.Y., Levy, S., McGue, M., et al. (2016). Nextgeneration genotype imputation service and methods. Nat Genet 48, 1284–1287.CrossRefGoogle Scholar
  14. Delaneau, O., Zagury, J.F., and Marchini, J. (2013). Improved wholechromosome phasing for disease and population genetic studies. Nat Methods 10, 5–6.CrossRefGoogle Scholar
  15. El-Asrag, M.E., Sergouniotis, P.I., McKibbin, M., Plagnol, V., Sheridan, E., Waseem, N., Abdelhamed, Z., McKeefry, D., Van Schil, K., Poulter, J. A., et al. (2015). Biallelic mutations in the autophagy regulator DRAM2 cause retinal dystrophy with early macular involvement. Am J Human Genets 96, 948–954.CrossRefGoogle Scholar
  16. Fuxman Bass, J.I., Diallo, A., Nelson, J., Soto, J.M., Myers, C.L., and Walhout, A.J.M. (2013). Using networks to measure similarity between genes: association index selection. Nat Methods 10, 1169–1176.CrossRefGoogle Scholar
  17. Gharahkhani, P., Burdon, K.P., Fogarty, R., Sharma, S., Hewitt, A.W., Martin, S., Law, M.H., Cremin, K., Bailey, J.N.C., Loomis, S.J., et al. (2014). Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma. Nat Genet 46, 1120–1125.CrossRefGoogle Scholar
  18. Heijl, A., Leske, M.C., Bengtsson, B., Hyman, L., and Hussein, M. (2002). Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol 120, 1268–1279.CrossRefGoogle Scholar
  19. Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44–57.CrossRefGoogle Scholar
  20. Hysi, P.G., Cheng, C.Y., Springelkamp, H., Macgregor, S., Bailey, J.N.C., Wojciechowski, R., Vitart, V., Nag, A., Hewitt, A.W., Höhn, R., et al. (2014). Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nat Genet 46, 1126–1130.CrossRefGoogle Scholar
  21. Kahn, B.M., Corman, T.S., Lovelace, K., Hong, M., Krauss, R.S., and Epstein, D.J. (2017). Prenatal ethanol exposure in mice phenocopies Cdon mutation by impeding Shh function in the etiology of optic nerve hypoplasia. Dis Model Mech 10, 29–37.CrossRefGoogle Scholar
  22. Khawaja, A.P., Cooke Bailey, J.N., Wareham, N.J., Scott, R.A., Simcoe, M., Igo, R.P., Song, Y.E., Wojciechowski, R., Cheng, C.Y., Khaw, P.T., et al. (2018). Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary openangle glaucoma. Nat Genet 50, 778–782.CrossRefGoogle Scholar
  23. Kim, M.S., Pinto, S.M., Getnet, D., Nirujogi, R.S., Manda, S.S., Chaerkady, R., Madugundu, A.K., Kelkar, D.S., Isserlin, R., Jain, S., et al. (2014). A draft map of the human proteome. Nature 509, 575–581.CrossRefGoogle Scholar
  24. Lee, J., Cox, B.D., Daly, C.M.S., Lee, C., Nuckels, R.J., Tittle, R.K., Uribe, R.A., and Gross, J.M. (2012). An ENU mutagenesis screen in zebrafish for visual system mutants identifies a novel splice-acceptor site mutation in patched2 that results in colobomas. Invest Ophthalmol Vis Sci 53, 8214–8221.CrossRefGoogle Scholar
  25. Liu, X.Z., Xia, X.J., Xu, L.R, Pandya, A., Liang, C.Y., Blanton, S.H., Brown, S.D., Steel, K.P., and Nance, W.E. (2000). Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss. Human Mol Genets 9, 63–67.CrossRefGoogle Scholar
  26. López-Bigas, N., Olivé, M., Rabionet, R., Ben-David, O., Martínez-Matos, J.A., Bravo, O., Banchs, I., Volpini, V., Gasparini, P., Avraham, K.B., et al. (2001). Connexin 31 (GJB3) is expressed in the peripheral and auditory nerves and causes neuropathy and hearing impairment. Human Mol Genets 10, 947–952.CrossRefGoogle Scholar
  27. Lu, C., Kasik, J., Stephan, D.A., Yang, S., Sperling, M.A., and Menon, R. K. (2001). Grtp1, a novel gene regulated by growth hormone. Endocrinology 142, 4568–4571.CrossRefGoogle Scholar
  28. Lu, T.Y., Doherty, J., and Freeman, M.R. (2014). DRK/DOS/SOS converge with Crk/Mbc/dCed-12 to activate Rac1 during glial engulfment of axonal debris. Proc Natl Acad Sci USA 111, 12544–12549.CrossRefGoogle Scholar
  29. MacGregor, S., Ong, J.S., An, J., Han, X., Zhou, T., Siggs, O.M., Law, M. H., Souzeau, E., Sharma, S., Lynn, D.J., et al. (2018). Genome-wide association study of intraocular pressure uncovers new pathways to glaucoma. Nat Genet 50, 1067–1071.CrossRefGoogle Scholar
  30. Morrison, J.C., Johnson, E.C., Cepurna, W., and Jia, L. (2005). Understanding mechanisms of pressure-induced optic nerve damage. Prog Retinal Eye Res 24, 217–240.CrossRefGoogle Scholar
  31. Motoyama, J., Heng, H., Crackower, M.A., Takabatake, T., Takeshima, K., Tsui, L.C., and Hui, C. (1998). Overlapping and non-overlapping Ptch2 expression with Shh during mouse embryogenesis. Mech Dev 78, 81–84.CrossRefGoogle Scholar
  32. Oddoux, S., Brocard, J., Schweitzer, A., Szentesi, P., Giannesini, B., Brocard, J., Fauré, J., Pernet-Gallay, K., Bendahan, D., Lunardi, J., et al. (2009). Triadin deletion induces impaired skeletal muscle function. J Biol Chem 284, 34918–34929.CrossRefGoogle Scholar
  33. Ozel, A.B., Moroi, S.E., Reed, D.M., Nika, M., Schmidt, C.M., Akbari, S., Scott, K., Rozsa, F., Pawar, H., Musch, D.C., et al. (2014). Genomewide association study and meta-analysis of intraocular pressure. Hum Genet 133, 41–57.CrossRefGoogle Scholar
  34. Quigley, H.A., and Broman, A.T. (2006). The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90, 262–267.CrossRefGoogle Scholar
  35. Rooryck, C., Diaz-Font, A., Osborn, D.P.S., Chabchoub, E., Hernandez-Hernandez, V., Shamseldin, H., Kenny, J., Waters, A., Jenkins, D., Kaissi, A.A., et al. (2011). Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome. Nat Genet 43, 197–203.CrossRefGoogle Scholar
  36. Roux-Buisson, N., Cacheux, M., Fourest-Lieuvin, A., Fauconnier, J., Brocard, J., Denjoy, I., Durand, P., Guicheney, P., Kyndt, F., Leenhardt, A., et al. (2012). Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Human Mol Genets 21, 2759–2767.CrossRefGoogle Scholar
  37. Sanfilippo, P.G., Hewitt, A.W., Hammond, C.J., and Mackey, D.A. (2010). The heritability of ocular traits. Survey Ophthalmol 55, 561–583.CrossRefGoogle Scholar
  38. Sarfarazi, M., Akarsu, N.A., Hossain, A., Turacli, E.M., Aktan, G.S., Barsoum-Homsy, M., Chevrette, L., and Sayli, S.B. (1995). Assignment of a locus (GLC3A) for primary congenital glaucoma (Buphthalmos) to 2p21 and evidence for genetic heterogeneity. Genomics 30, 171–177.CrossRefGoogle Scholar
  39. Sergouniotis, P.I., McKibbin, M., Robson, A.G., Bolz, H.J., De Baere, E., Müller, P.L., Heller, R., El-Asrag, M.E., Van Schil, K., Plagnol, V., et al. (2015). Disease expression in autosomal recessive retinal dystrophy associated with mutations in the DRAM2 gene. Invest Ophthalmol Vis Sci 56, 8083–8090.CrossRefGoogle Scholar
  40. Smits, N.C., Kobayashi, T., Srivastava, P.K., Skopelja, S., Ivy, J.A., Elwood, D.J., Stan, R.V., Tsongalis, G.J., Sellke, F.W., Gross, P.L., et al. (2017). HS3ST1 genotype regulates antithrombin’s inflammomodulatory tone and associates with atherosclerosis. Matrix Biol 63, 69–90.CrossRefGoogle Scholar
  41. Springelkamp, H., Iglesias, A.I., Mishra, A., Höhn, R., Wojciechowski, R., Khawaja, A.P., Nag, A., Wang, Y.X., Wang, J.J., Cuellar-Partida, G., et al. (2017). New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics. Hum Mol Genet 26, ddw399.Google Scholar
  42. Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., Doerks, T., Stark, M., Muller, J., Bork, P., et al. (2011). The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucl Acids Res 39, D561–D568.CrossRefGoogle Scholar
  43. Tang, Y., Katuri, V., Dillner, A., Mishra, B., Deng, C.X., and Mishra, L. (2003). Disruption of transforming growth factor-beta signaling in ELF beta-spectrin-deficient mice. Science 299, 574–577.CrossRefGoogle Scholar
  44. van Koolwijk, L.M.E., Ramdas, W.D., Ikram, M.K., Jansonius, N.M., Pasutto, F., Hysi, P.G., Macgregor, S., Janssen, S.F., Hewitt, A.W., Viswanathan, A.C., et al. (2012). Common genetic determinants of intraocular pressure and primary open-angle glaucoma. PLoS Genet 8, e1002611.CrossRefGoogle Scholar
  45. Vranka, J.A., and Acott, T.S. (2017). Pressure-induced expression changes in segmental flow regions of the human trabecular meshwork. Exp Eye Res 158, 67–72.CrossRefGoogle Scholar
  46. Vranka, J.A., Kelley, M.J., Acott, T.S., and Keller, K.E. (2015). Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res 133, 112–125.CrossRefGoogle Scholar
  47. Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164.CrossRefGoogle Scholar
  48. Weinreb, R.N., Aung, T., and Medeiros, F.A. (2014). The pathophysiology and treatment of glaucoma. JAMA 311, 1901–1911.CrossRefGoogle Scholar
  49. Weinreb, R.N., Leung, C.K.S., Crowston, J.G., Medeiros, F.A., Friedman, D.S., Wiggs, J.L., and Martin, K.R. (2016). Primary open-angle glaucoma. Nat Rev Dis Primers 2, 16067.CrossRefGoogle Scholar
  50. Westhofen, P., Watzka, M., Marinova, M., Hass, M., Kirfel, G., Müller, J., Bevans, C.G., Müller, C.R., and Oldenburg, J. (2011). Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1) mediates vitamin K-dependent intracellular antioxidant function. J Biol Chem 286, 15085–15094.CrossRefGoogle Scholar
  51. Wolfs, R.C., Klaver, C.C., Ramrattan, R.S., van Duijn, C.M., Hofman, A., and de Jong, P.T. (1998). Genetic risk of primary open-angle glaucoma. Population-based familial aggregation study. Arch Ophthalmol 116, 1640–1645.Google Scholar
  52. Yang, J., Weedon, M.N., Purcell, S., Lettre, G., Estrada, K., Willer, C.J., Smith, A.V., Ingelsson, E., O’Connell, J.R., Mangino, M., et al. (2011). Genomic inflation factors under polygenic inheritance. Eur J Hum Genet 19, 807–812.CrossRefGoogle Scholar
  53. Yoon, J.H., Her, S., Kim, M., Jang, I.S., and Park, J. (2012). The expression of damage-regulated autophagy modulator 2 (DRAM2) contributes to autophagy induction. Mol Biol Rep 39, 1087–1093.CrossRefGoogle Scholar
  54. Zuberi, K., Franz, M., Rodriguez, H., Montojo, J., Lopes, C.T., Bader, G. D., and Morris, Q. (2013). GeneMANIA prediction server 2013 update. Nucleic Acids Res 41, W115–W122.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lulin Huang
    • 1
    • 2
    Email author
  • Yuhong Chen
    • 3
  • Ying Lin
    • 1
    • 2
  • Pancy O. S. Tam
    • 4
  • Yilian Cheng
    • 5
  • Yi Shi
    • 1
  • Bo Gong
    • 1
  • Fang Lu
    • 1
  • Jialiang Yang
    • 1
  • Haixin Wang
    • 1
  • Yi Yin
    • 1
  • Yong Cao
    • 1
  • Dan Jiang
    • 1
  • Ling Zhong
    • 1
  • Bai Xue
    • 1
  • Jing Wang
    • 1
  • Fang Hao
    • 1
  • Dean-Yao Lee
    • 1
  • Chi-Pui Pang
    • 4
  • Xinghuai Sun
    • 3
  • Zhenglin Yang
    • 1
    • 2
    Email author
  1. 1.The Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Provincial People’s Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Institute of Chengdu Biology, Sichuan Translational Medicine HospitalChinese Academy of SciencesChengduChina
  3. 3.Department of Ophthalmology Visual Science, Eye and ENT Hospital, Shanghai Medical SchoolFudan UniversityShanghaiChina
  4. 4.Department of Ophthalmology and Visual SciencesThe Chinese University of Hong KongHong KongChina
  5. 5.Department of OphthalmologySichuan Academy of Medical Sciences and Sichuan Provincial People’s HospitalChengduChina

Personalised recommendations