Science China Life Sciences

, Volume 62, Issue 1, pp 140–143 | Cite as

Inevitability or contingency: how many chromosomes do we really need?

  • Shuangying Jiang
  • Junbiao DaiEmail author


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayala, F.J., and Coluzzi, M. (2005). Chromosome speciation: humans, Drosophila, and mosquitoes. Proc Natl Acad Sci USA 102, 6535–6542.CrossRefGoogle Scholar
  2. Baril, C., Richaud, C., Baranton, G., and Girons, I.S. (1989). Linear chromosome of Borrelia burgdorferi. Res MicroBiol 140, 507–516.CrossRefGoogle Scholar
  3. Bickmore, W.A. (2013). The spatial organization of the human genome. Annu Rev Genom Hum Genet 14, 67–84.CrossRefGoogle Scholar
  4. Boeke, J.D., Church, G., Hessel, A., Kelley, N.J., Arkin, A., Cai, Y., Carlson, R., Chakravarti, A., Cornish, V.W., Holt, L., et al. (2016). GENOME ENGINEERING. The Genome Project-Write. Science 353, 126–127.Google Scholar
  5. Cremer, T., and Cremer, C. (2001). Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2, 292–301.CrossRefGoogle Scholar
  6. Crosland, M.W.J., and Crozier, R.H. (1986). Myrmecia pilosula, an ant with only one pair of chromosomes. Science 231, 1278.CrossRefGoogle Scholar
  7. Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y.J., Lee, C., Shendure, J., Fields, S., Blau, C.A., and Noble, W.S. (2010). A threedimensional model of the yeast genome. Nature 465, 363–367.CrossRefGoogle Scholar
  8. Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M., et al. (1996). Life with 6000 genes. Science 274, 546–567.CrossRefGoogle Scholar
  9. Gordon, J.L., Byrne, K.P., and Wolfe, K.H. (2011). Mechanisms of chromosome number evolution in yeast. PLoS Genet 7, e1002190.CrossRefGoogle Scholar
  10. Green, E.D., Watson, J.D., and Collins, F.S. (2015). Human Genome Project: twenty-five years of big biology. Nature 526, 29–31.CrossRefGoogle Scholar
  11. Ji, X., Dadon, D.B., Powell, B.E., Fan, Z.P., Borges-Rivera, D., Shachar, S., Weintraub, A.S., Hnisz, D., Pegoraro, G., Lee, T.I., et al. (2016). 3D chromosome regulatory landscape of human pluripotent cells. Cell Stem Cell 18, 262–275.CrossRefGoogle Scholar
  12. Jumas-Bilak, E., Michaux-Charachon, S., Bourg, G., O'Callaghan, D., and Ramuz, M. (1998). Differences in chromosome number and genome rearrangements in the genusBrucella. Mol MicroBiol 27, 99–106.CrossRefGoogle Scholar
  13. Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F., and Chen, L. (2011). Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat Biotechnol 30, 90–98.CrossRefGoogle Scholar
  14. Kellis, M., Birren, B.W., and Lander, E.S. (2004). Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617–624.CrossRefGoogle Scholar
  15. Lindblad-Toh, K., Wade, C.M., Mikkelsen, T.S., Karlsson, E.K., Jaffe, D. B., Kamal, M., Clamp, M., Chang, J.L., Kulbokas, E.J., Zody, M.C., et al. (2005). Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803–819.CrossRefGoogle Scholar
  16. Lukhtanov, V.A. (2015). The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms. CCG 9, 683–690.CrossRefGoogle Scholar
  17. Luo, J., Sun, X., Cormack, B.P., and Boeke, J.D. (2018). Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast. Nature 560, 392–396.CrossRefGoogle Scholar
  18. Mercy, G., Mozziconacci, J., Scolari, V.F., Yang, K., Zhao, G., Thierry, A., Luo, Y., Mitchell, L.A., Shen, M., Shen, Y., et al. (2017). 3D organization of synthetic and scrambled chromosomes. Science 355, eaaf4597.Google Scholar
  19. Neurohr, G., Naegeli, A., Titos, I., Theler, D., Greber, B., Díez, J., Gabaldón, T., Mendoza, M., and Barral, Y. (2011). A midzone-based ruler adjusts chromosome compaction to anaphase spindle length. Science 332, 465–468.CrossRefGoogle Scholar
  20. Otto, S.P. (2007). The evolutionary consequences of polyploidy. Cell 131, 452–462.CrossRefGoogle Scholar
  21. Rao, S.S.P., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680.CrossRefGoogle Scholar
  22. Shao, Y., Lu, N., Wu, Z., Cai, C., Wang, S., Zhang, L.L., Zhou, F., Xiao, S., Liu, L., Zeng, X., et al. (2018). Creating a functional singlechromosome yeast. Nature 560, 331–335.CrossRefGoogle Scholar
  23. Suwanto, A., and Kaplan, S. (1989). Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: presence of two unique circular chromosomes.. J Bacteriol 171, 5850–5859.CrossRefGoogle Scholar
  24. Titos, I., Ivanova, T., and Mendoza, M. (2014). Chromosome length and perinuclear attachment constrain resolution of DNA intertwines. J Cell Biol 206, 719–733.CrossRefGoogle Scholar
  25. Wood, V., Gwilliam, R., Rajandream, M.A., Lyne, M., Lyne, R., Stewart, A., Sgouros, J., Peat, N., Hayles, J., Baker, S., et al. (2002). Erratum: The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880.CrossRefGoogle Scholar
  26. Yue, J.X., Li, J., Aigrain, L., Hallin, J., Persson, K., Oliver, K., Bergström, A., Coupland, P., Warringer, J., Lagomarsino, M.C., et al. (2017). Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nat Genet 49, 913–924.CrossRefGoogle Scholar
  27. Zhang, W., Zhao, G., Luo, Z., Lin, Y., Wang, L., Guo, Y., Wang, A., Jiang, S., Jiang, Q., Gong, J., et al. (2017). Engineering the ribosomal DNA in a megabase synthetic chromosome. Science 355, eaaf3981.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shenzhen Key Laboratory of Synthetic Genomics and Center for Synthetic Genomics, Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina

Personalised recommendations