Advertisement

Science China Life Sciences

, Volume 61, Issue 12, pp 1503–1514 | Cite as

Diverse and variable sex determination mechanisms in vertebrates

  • Xi-Yin Li
  • Jian-Fang GuiEmail author
Review

Abstract

Sex is prevalent in nature and sex determination is one of the most fundamental biological processes, while the way of initiating female and male development exhibits remarkable diversity and variability across vertebrates. The knowledge on why and how sex determination mechanisms evolve unusual plasticity remains limited. Here, we summarize sex determination systems, master sex-determining genes and gene-regulatory networks among vertebrates. Recent research advancements on sex determination system transition are also introduced and discussed in some non-model animals with multiple sex determination mechanisms. This review will provide insights into the origin, transition and evolutionary adaption of different sex determination strategies in vertebrates, as well as clues for future perspectives in this field.

Keywords

sex determination sex-determining gene sex chromosome sex transition sex differentiation sex control breeding 

Notes

Acknowledgements

This work was supported by the Key Program of Frontier Sciences of the Chinese Academy of Sciences (QYZDY-SSW-SMC025), the National Natural Science Foundation of China (31502148 and 31873036), the Earmarked Fund for Modern Agro-industry Technology Research System (NYCYTX-49), the Autonomous Project of the State Key Laboratory of Freshwater Ecology and Biotechnology (2016FBZ01), the Autonomous Project of the Institute of Hydrobiology, Chinese Academy of Sciences (Y25A171) and the Knowledge Innovation Program of the Chinese Academy of Science.

References

  1. Alho, J.S., Matsuba, C., and Merilä, J. (2010). Sex reversal and primary sex ratios in the common frog (Rana temporaria). Mol Ecol 19, 1763–1773.Google Scholar
  2. Anderson, J.L., Rodríguez Marí, A., Braasch, I., Amores, A., Hohenlohe, P., Batzel, P., and Postlethwait, J.H. (2012). Multiple sex-associated regions and a putative sex chromosome in zebrafish revealed by RAD mapping and population genomics. PLoS ONE 7, e40701.Google Scholar
  3. Bachtrog, D., Mank, J.E., Peichel, C.L., Kirkpatrick, M., Otto, S.P., Ashman, T.L., Hahn, M.W., Kitano, J., Mayrose, I., Ming, R., et al. (2014). Sex determination: why so many ways of doing it? PLoS Biol 12, e1001899.Google Scholar
  4. Baroiller, J.F., and D’Cotta, H. (2016). The reversible sex of gonochoristic fish: insights and consequences. Sex Dev 10, 242–266.Google Scholar
  5. Baroiller, J.F., D’Cotta, H., and Saillant, E. (2009). Environmental effects on fish sex determination and differentiation. Sex Dev 3, 118–135.Google Scholar
  6. Barrionuevo, F., Bagheri-Fam, S., Klattig, J., Kist, R., Taketo, M.M., Englert, C., and Scherer, G. (2006). Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reproduction 74, 195–201.Google Scholar
  7. Brown, E.E., Baumann, H., and Conover, D.O. (2014). Temperature and photoperiod effects on sex determination in a fish. J Exp Mar Biol Ecol 461, 39–43.Google Scholar
  8. Camacho, J.P.M., Schmid, M., and Cabrero, J. (2011). B chromosomes and sex in animals. Sex Dev 5, 155–166.Google Scholar
  9. Capel, B. (2017). Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nat Rev Genet 18, 675–689.Google Scholar
  10. Carré, G.A., Siggers, P., Xipolita, M., Brindle, P., Lutz, B., Wells, S., and Greenfield, A. (2018). Loss of p300 and CBP disrupts histone acetylation at the mouse Sry promoter and causes XY gonadal sex reversal. Human Mol Genets 27, 190–198.Google Scholar
  11. Chaboissier, M.C., Kobayashi, A., Vidal, V.I.P., Lützkendorf, S., van de Kant, H.J.G., Wegner, M., de Rooij, D.G., Behringer, R.R., and Schedl, A. (2004). Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 131, 1891–1901.Google Scholar
  12. Chen, S., Zhang, G., Shao, C., Huang, Q., Liu, G., Zhang, P., Song, W., An, N., Chalopin, D., Volff, J.N., et al. (2014). Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet 46, 253–260.Google Scholar
  13. Cioffi, M.B., and Bertollo, L.A.C. (2010). Initial steps in XY chromosome differentiation in Hoplias malabaricus and the origin of an X1X2Y sex chromosome system in this fish group. Heredity 105, 554–561.Google Scholar
  14. Cortez, D., Marin, R., Toledo-Flores, D., Froidevaux, L., Liechti, A., Waters, P.D., Grützner, F., and Kaessmann, H. (2014). Origins and functional evolution of Y chromosomes across mammals. Nature 508, 488–493.Google Scholar
  15. Cui, Z., Liu, Y., Wang, W., Wang, Q., Zhang, N., Lin, F., Wang, N., Shao, C., Dong, Z., Li, Y., et al. (2017). Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis). Sci Rep 7, 42213.Google Scholar
  16. Dan, C., Mei, J., Wang, D., and Gui, J.F. (2013). Genetic differentiation and efficient sex-specific marker development of a pair of Y- and X-linked markers in yellow catfish. Int J Biol Sci 9, 1043–1049.Google Scholar
  17. Dan, C., Lin, Q., Gong, G., Yang, T., Xiong, S., Xiong, Y., Huang, P., Gui, J.F., and Mei, J. (2018) A novel PDZ domain-containing gene is essential for male sex differentiation and maintenance in yellow catfish (Pelteobagrus fulvidraco). Sci Bull.Google Scholar
  18. de Oliveira, R.R., Feldberg, E., dos Anjos, M.B., and Zuanon, J. (2007). Occurrence of multiple sexual chromosomes (XX/XY1Y2 and Z1Z1Z2Z2/Z1Z2W1W2) in catfishes of the genus Ancistrus (Siluriformes: Loricariidae) from the Amazon basin. Genetica 134, 243–249.Google Scholar
  19. DeFalco, T., and Capel, B. (2009). Gonad morphogenesis in vertebrates: divergent means to a convergent end. Annu Rev Cell Dev Biol 25, 457–482.Google Scholar
  20. Ferro, J.M., Cardozo, D.E., Suárez, P., Boeris, J.M., Blasco-Zúñiga, A., Barbero, G., Gomes, A., Gazoni, T., Costa, W., Nagamachi, C.Y., et al. (2018). Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae). PLoS ONE 13, e0192861.Google Scholar
  21. Flament, S. (2016). Sex reversal in amphibians. Sex Dev 10, 267–278.Google Scholar
  22. Gamble, T., Coryell, J., Ezaz, T., Lynch, J., Scantlebury, D.P., and Zarkower, D. (2015). Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol Biol Evol 32, 1296–1309.Google Scholar
  23. Ge, C., Ye, J., Weber, C., Sun, W., Zhang, H., Zhou, Y., Cai, C., Qian, G., and Capel, B. (2018). The histone demethylase KDM6B regulates temperature-dependent sex determination in a turtle species. Science 360, 645–648.Google Scholar
  24. Ge, C., Ye, J., Zhang, H., Zhang, Y., Sun, W., Sang, Y., Capel, B., and Qian, G. (2017). Dmrt1 induces the male pathway in a turtle species with temperature-dependent sex determination. Development 144, 2222–2233.Google Scholar
  25. Gonen, N., Futtner, C.R., Wood, S., Garcia-Moreno, S.A., Salamone, I.M., Samson, S.C., Sekido, R., Poulat, F., Maatouk, D.M., and Lovell-Badge, R. (2018). Sex reversal following deletion of a single distal enhancer ofSox9. Science 360, 1469–1473.Google Scholar
  26. Govoroun, M.S., Pannetier, M., Pailhoux, E., Cocquet, J., Brillard, J.P., Couty, I., Batellier, F., and Cotinot, C. (2004). Isolation of chicken homolog of theFOXL2 gene and comparison of its expression patterns with those of aromatase during ovarian development. Dev Dyn 231, 859–870.Google Scholar
  27. Green, D.M. (1988). Cytogenetics of the endemic New Zealand frog, Leiopelma hochstetteri: extraordinary supernumerary chromosome variation and a unique sex-chromosome system. Chromosoma 97, 55–70.Google Scholar
  28. Gui, J.F., and Zhou, L. (2010). Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio. Sci China Life Sci 53, 409–415.Google Scholar
  29. Hattori, R.S., Murai, Y., Oura, M., Masuda, S., Majhi, S.K., Sakamoto, T., Fernandino, J.I., Somoza, G.M., Yokota, M., and Strüssmann, C.A. (2012). A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci USA 109, 2955–2959.Google Scholar
  30. Herpin, A., and Schartl, M. (2015). Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Rep 16, 1260–1274.Google Scholar
  31. Holleley, C.E., O’Meally, D., Sarre, S.D., Marshall Graves, J.A., Ezaz, T., Matsubara, K., Azad, B., Zhang, X., and Georges, A. (2015). Sex reversal triggers the rapid transition from genetic to temperaturedependent sex. Nature 523, 79–82.Google Scholar
  32. Houben, A., Banaei-Moghaddam, A.M., Klemme, S., and Timmis, J.N. (2014). Evolution and biology of supernumerary B chromosomes. Cell Mol Life Sci 71, 467–478.Google Scholar
  33. Jiang, D.N., Yang, H.H., Li, M.H., Shi, H.J., Zhang, X.B., and Wang, D.S. (2016). gsdf is a downstream gene ofdmrt1 that functions in the male sex determination pathway of the Nile tilapia. Mol Reprod Dev 83, 497–508.Google Scholar
  34. Just, W., Rau, W., Vogel, W., Akhverdian, M., Fredga, K., Marshall Graves, J.A., and Lyapunova, E. (1995). Absence of Sry in species of the vole Ellobius. Nat Genet 11, 117–118.Google Scholar
  35. Kamiya, T., Kai, W., Tasumi, S., Oka, A., Matsunaga, T., Mizuno, N., Fujita, M., Suetake, H., Suzuki, S., Hosoya, S., et al. (2012). A transspecies missense SNP in amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet 8, e1002798.Google Scholar
  36. Kim, Y., Kobayashi, A., Sekido, R., DiNapoli, L., Brennan, J., Chaboissier, M.C., Poulat, F., Behringer, R.R., Lovell-Badge, R., and Capel, B. (2006). Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4, e187.Google Scholar
  37. Kitano, J., and Peichel, C.L. (2012). Turnover of sex chromosomes and speciation in fishes. Environ Biol Fish 94, 549–558.Google Scholar
  38. Kitano, T., Takamune, K., Nagahama, Y., and Abe, S.I. (2000). Aromatase inhibitor and 17?-methyltestosterone cause sex-reversal from genetical females to phenotypic males and suppression of P450 aromatase gene expression in Japanese flounder (Paralichthys olivaceus). Mol Reprod Dev 56, 1–5.Google Scholar
  39. Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P., and Lovell-Badge, R. (1991). Male development of chromosomally female mice transgenic for Sry. Nature 351, 117–121.Google Scholar
  40. Kuroki, S., Matoba, S., Akiyoshi, M., Matsumura, Y., Miyachi, H., Mise, N., Abe, K., Ogura, A., Wilhelm, D., Koopman, P., et al. (2013). Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science 341, 1106–1109.Google Scholar
  41. Lambeth, L.S., Cummins, D.M., Doran, T.J., Sinclair, A.H., and Smith, C. A. (2013). Overexpression of aromatase alone is sufficient for ovarian development in genetically male chicken embryos. PLoS ONE 8, e68362.Google Scholar
  42. Lambeth, L.S., Raymond, C.S., Roeszler, K.N., Kuroiwa, A., Nakata, T., Zarkower, D., and Smith, C.A. (2014). Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads. Dev Biol 389, 160–172.Google Scholar
  43. Lau, E.S.W., Zhang, Z., Qin, M., and Ge, W. (2016). Knockout of zebrafish ovarian aromatase gene (cyp19a1a) by TALEN and CRISPR/Cas9 Leads to all-male offspring due to failed ovarian differentiation. Sci Rep 6, 37357.Google Scholar
  44. Li, M., Sun, Y., Zhao, J., Shi, H., Zeng, S., Ye, K., Jiang, D., Zhou, L., Sun, L., Tao, W., et al. (2015). A tandem duplicate of anti-Müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile tilapia, Oreochromis niloticus. PLoS Genet 11, e1005678.Google Scholar
  45. Li, X.Y., and Gui, J.F. (2018). An epigenetic regulatory switch controlling temperature-dependent sex determination in vertebrates. Sci China Life Sci 61, 996–998.Google Scholar
  46. Li, X.Y., Liu, X.L., Ding, M., Li, Z., Zhou, L., Zhang, X.J., and Gui, J.F. (2017). A novel male-specific SET domain-containing gene setdm identified from extra microchromosomes of gibel carp males. Sci Bull 62, 528–536.Google Scholar
  47. Li, X.Y., Liu, X.L., Zhu, Y.J., Zhang, J., Ding, M., Wang, M.T., Wang, Z. W., Li, Z., Zhang, X.J., Zhou, L., et al. (2018). Origin and transition of sex determination mechanisms in a gynogenetic hexaploid fish. Heredity 121, 64–74.Google Scholar
  48. Li, X.Y., Li, Z., Zhang, X.J., Zhou, L., and Gui, J.F. (2014a). Expression characterization of testicular DMRT1 in both Sertoli cells and spermatogenic cells of polyploid gibel carp. Gene 548, 119–125.Google Scholar
  49. Li, X.Y., Zhang, Q.Y., Zhang, J., Zhou, L., Li, Z., Zhang, X.J., Wang, D., and Gui, J.F. (2016). Extra microchromosomes play male determination role in polyploid gibel carp. Genetics 203, 1415–1424.Google Scholar
  50. Li, X.Y., Zhang, X.J., Li, Z., Hong, W., Liu, W., Zhang, J., and Gui, J.F. (2014b). Evolutionary history of two divergent Dmrt1 genes reveals two rounds of polyploidy origins in gibel carp. Mol PhyloGenets Evol 78, 96–104.Google Scholar
  51. Lin, Q., Mei, J., Li, Z., Zhang, X., Zhou, L., and Gui, J.F. (2017). Distinct and cooperative roles ofamh anddmrt1 in self-renewal and differentiation of male germ cells in zebrafish. Genetics 207, 1007–1022.Google Scholar
  52. Liu, X.L., Jiang, F.F., Wang, Z.W., Li, X.Y., Li, Z., Zhang, X.J., Chen, F., Mao, J.F., Zhou, L., and Gui, J.F. (2017a). Wider geographic distribution and higher diversity of hexaploids than tetraploids in Carassius species complex reveal recurrent polyploidy effects on adaptive evolution. Sci Rep 7, 5395.Google Scholar
  53. Liu, X.L., Li, X.Y., Jiang, F.F., Wang, Z.W., Li, Z., Zhang, X.J., Zhou, L., and Gui, J.F. (2017b). Numerous mitochondrial DNA haplotypes reveal multiple independent polyploidy origins of hexaploids inCarassius species complex. Ecol Evol 7, 10604–10615.Google Scholar
  54. Loffler, K.A., Zarkower, D., and Koopman, P. (2003). Etiology of ovarian failure in blepharophimosis ptosis epicanthus inversus syndrome: FOXL2 is a conserved, early-acting gene in vertebrate ovarian development. Endocrinology 144, 3237–3243.Google Scholar
  55. Ma, W., Gabriel, T.S., Martis, M.M., Gursinsky, T., Schubert, V., Vrána, J., Doležel, J., Grundlach, H., Altschmied, L., Scholz, U., et al. (2017). Rye B chromosomes encode a functional Argonaute-like protein within vitro slicer activities similar to its A chromosome paralog. New Phytol 213, 916–928.Google Scholar
  56. Martis, M.M., Klemme, S., Banaei-Moghaddam, A.M., Blattner, F.R., Macas, J., Schmutzer, T., Scholz, U., Gundlach, H., Wicker, T., Šimková, H., et al. (2012). Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc Natl Acad Sci USA 109, 13343–13346.Google Scholar
  57. Matson, C.K., and Zarkower, D. (2012). Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet 13, 163–174.Google Scholar
  58. Matsubara, K., Tarui, H., Toriba, M., Yamada, K., Nishida-Umehara, C., Agata, K., and Matsuda, Y. (2006). Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc Natl Acad Sci USA 103, 18190–18195.Google Scholar
  59. Matsuda, M. (2005). Sex Determination in the Teleost Medaka,Oryzias latipes. Annu Rev Genet 39, 293–307.Google Scholar
  60. Matsuda, M., Nagahama, Y., Shinomiya, A., Sato, T., Matsuda, C., Kobayashi, T., Morrey, C.E., Shibata, N., Asakawa, S., Shimizu, N., et al. (2002). DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417, 559–563.Google Scholar
  61. Mei, J., and Gui, J.F. (2015). Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Sci China Life Sci 58, 124–136.Google Scholar
  62. Mitchell, N.J., Nelson, N.J., Cree, A., Pledger, S., Keall, S.N., and Daugherty, C.H. (2006). Support for a rare pattern of temperaturedependent sex determination in archaic reptiles: evidence from two species of tuatara (Sphenodon).. Front Zool 3, 9–12.Google Scholar
  63. Miura, I. (2007). An evolutionary witness: the frog Rana rugosa underwent change of heterogametic sex from XY male to ZW female. Sex Dev 1, 323–331.Google Scholar
  64. Myosho, T., Otake, H., Masuyama, H., Matsuda, M., Kuroki, Y., Fujiyama, A., Naruse, K., Hamaguchi, S., and Sakaizumi, M. (2012). Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 191, 163–170.Google Scholar
  65. Nakata, T., Ishiguro, M., Aduma, N., Izumi, H., and Kuroiwa, A. (2013). Chicken hemogen homolog is involved in the chicken-specific sexdetermining mechanism. Proc Natl Acad Sci USA 110, 3417–3422.Google Scholar
  66. Ogata, M., Hasegawa, Y., Ohtani, H., Mineyama, M., and Miura, I. (2007). The ZZ/ZW sex-determining mechanism originated twice and independently during evolution of the frog, Rana rugosa. Heredity 100, 92–99.Google Scholar
  67. Ogata, M., Ohtani, H., Igarashi, T., Hasegawa, Y., Ichikawa, Y., Miura, I. (2003). Change of the heterogametic sex from male to female in the frog. Genetics 164, 613–620.Google Scholar
  68. Ospina-Alvarez, N., and Piferrer, F. (2008). Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS ONE 3, e2837.Google Scholar
  69. Otake, T., and Kuroiwa, A. (2016). Molecular mechanism of male differentiation is conserved in the SRY-absent mammal, Tokudaia osimensis. Sci Rep 6, 32874.Google Scholar
  70. Pennell, M.W., Mank, J.E., and Peichel, C.L. (2018). Transitions in sex determination and sex chromosomes across vertebrate species. Mol Ecol 27, 3950–3963.Google Scholar
  71. Quinn, A.E., Georges, A., Sarre, S.D., Guarino, F., Ezaz, T., and Graves, J. A.M. (2007). Temperature sex reversal implies sex gene dosage in a reptile. Science 316, 411.Google Scholar
  72. Reichwald, K., Petzold, A., Koch, P., Downie, B.R., Hartmann, N., Pietsch, S., Baumgart, M., Chalopin, D., Felder, M., Bens, M., et al. (2015). Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell 163, 1527–1538.Google Scholar
  73. Rens, W., Grützner, F., O’brien, P.C.M., Fairclough, H., Graves, J.A.M., and Ferguson-Smith, M.A. (2004). From The Cover: Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc Natl Acad Sci USA 101, 16257–16261.Google Scholar
  74. Rens, W., O’Brien, P.C.M., Grützner, F., Clarke, O., Graphodatskaya, D., Tsend-Ayush, E., Trifonov, V.A., Skelton, H., Wallis, M.C., Johnston, S., et al. (2007). The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z. Genome Biol 8, R243.Google Scholar
  75. Rizzoti, K., Brunelli, S., Carmignac, D., Thomas, P.Q., Robinson, I.C., and Lovell-Badge, R. (2004). SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat Genet 36, 247–255.Google Scholar
  76. Roco, Á.S., Olmstead, A.W., Degitz, S.J., Amano, T., Zimmerman, L.B., and Bullejos, M. (2015). Coexistence of Y, W, and Z sex chromosomes inXenopus tropicalis. Proc Natl Acad Sci USA 112, E4752–E4761.Google Scholar
  77. Rondeau, E.B., Messmer, A.M., Sanderson, D.S., Jantzen, S.G., von Schalburg, K.R., Minkley, D.R., Leong, J.S., Macdonald, G.M., Davidsen, A.E., Parker, W.A., et al. (2013). Genomics of sablefish (Anoplopoma fimbria): expressed genes, mitochondrial phylogeny, linkage map and identification of a putative sex gene. BMC Genomics 14, 452.Google Scholar
  78. Rovatsos, M., Vukic, J., Lymberakis, P., and Kratochvíl, L. (2015). Evolutionary stability of sex chromosomes in snakes. Proc R Soc B 282, 20151992.Google Scholar
  79. Sánchez, L., and Chaouiya, C. (2018). Logical modelling uncovers developmental constraints for primary sex determination of chicken gonads. J R Soc Interface 15, 20180165.Google Scholar
  80. Sarre, S.D., Ezaz, T., and Georges, A. (2011). Transitions between sexdetermining systems in reptiles and amphibians. Annu Rev Genom Hum Genet 12, 391–406.Google Scholar
  81. Sato, Y., Shinka, T., Sakamoto, K., Ewis, A.A., and Nakahori, Y. (2010). The male-determining gene SRY is a hybrid of DGCR8 and SOX3, and is regulated by the transcription factor CP2. Mol Cell Biochem 337, 267–275.Google Scholar
  82. Schartl, M. (2015). Sex determination by multiple sex chromosomes inXenopus tropicalis. Proc Natl Acad Sci USA 112, 10575–10576.Google Scholar
  83. Schartl, M., Schories, S., Wakamatsu, Y., Nagao, Y., Hashimoto, H., Bertin, C., Mourot, B., Schmidt, C., Wilhelm, D., Centanin, L., et al. (2018). Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements. BMC Biol 16, 16.Google Scholar
  84. Schmid, M., Feichtinger, W., Steinlein, C., Haaf, T., Schartl, M., Visbal García, R., Manzanilla Pupo, J., and Fernández Badillo, A. (2002). Chromosome banding in amphibia. Cytogenet Genome Res 99, 330–343.Google Scholar
  85. Schroeder, A.L., Metzger, K.J., Miller, A., and Rhen, T. (2016). A novel candidate gene for temperature-dependent sex determination in the common snapping turtle. Genetics 203, 557–571.Google Scholar
  86. Shao, C., Li, Q., Chen, S., Zhang, P., Lian, J., Hu, Q., Sun, B., Jin, L., Liu, S., Wang, Z., et al. (2014). Epigenetic modification and inheritance in sexual reversal of fish. Genome Res 24, 604–615.Google Scholar
  87. Shao, G.M., Li, X.Y., Wang, Y., Wang, Z.W., Li, Z., Zhang, X.J., Zhou, L., and Gui, J.F. (2018). Whole genome incorporation and epigenetic stability in a newly synthetic allopolyploid of gynogenetic gibel carp. Genome Biol Evol 10, 2394–2407.Google Scholar
  88. Simpson, E.R., Mahendroo, M.S., Means, G.D., Kilgore, M.W., Hinshelwood, M.M., Graham-lorence, S., Amarneh, B., Ito, Y., Fisher, C.R., Michael, M.D., et al. (1994). Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocrine Rev 15, 342–355.Google Scholar
  89. Smith, C.A., McClive, P.J., Western, P.S., Reed, K.J., and Sinclair, A.H. (1999). Conservation of a sex-determining gene. Nature 402, 601–602.Google Scholar
  90. Smith, C.A., Roeszler, K.N., Ohnesorg, T., Cummins, D.M., Farlie, P.G., Doran, T.J., and Sinclair, A.H. (2009). The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461, 267–271.Google Scholar
  91. Sunobe, T., and Nakazono, A. (1993). Sex change in both directions by alteration of social dominance in Trimma okinawae (Pisces: Gobiidae). Ethology 94, 339–345.Google Scholar
  92. Sutou, S., Mitsui, Y., and Tsuchiya, K. (2001). Sex determination without the Y Chromosome in two Japanese rodents Tokudaia osimensis osimensis and Tokudaia osimensis spp.. Mammalian Genome 12, 17–21.Google Scholar
  93. Sutton, E., Hughes, J., White, S., Sekido, R., Tan, J., Arboleda, V., Rogers, N., Knower, K., Rowley, L., Eyre, H., et al. (2011). Identification of SOX3 as an XX male sex reversal gene in mice and humans. J Clin Invest 121, 328–341.Google Scholar
  94. Takehana, Y., Matsuda, M., Myosho, T., Suster, M.L., Kawakami, K., Shin- I, T., Kohara, Y., Kuroki, Y., Toyoda, A., Fujiyama, A., et al. (2014). Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat Commun 5, 4157.Google Scholar
  95. Vidal, V.P.I., Chaboissier, M.C., de Rooij, D.G., and Schedl, A. (2001). Sox9 induces testis development in XX transgenic mice. Nat Genet 28, 216–217.Google Scholar
  96. Wallis, M.C., Waters, P.D., Delbridge, M.L., Kirby, P.J., Pask, A.J., Grützner, F., Rens, W., Ferguson-Smith, M.A., and Graves, J.A.M. (2008). Sex determination in platypus and echidna: autosomal location of SOX3 confirms the absence of SRY from monotremes. Chromosome Res 15, 949–959.Google Scholar
  97. Wang, D., Mao, H.L., Chen, H.X., Liu, H.Q., and Gui, J.F. (2009). Isolation of Y- and X-linked SCAR markers in yellow catfish and application in the production of all-male populations. Animal Genets 40, 978–981.Google Scholar
  98. Warner, R.R., Fitch, D.L., and Standish, J.D. (1996). Social control of sex change in the shelf limpet, Crepidula norrisiarum: size-specific responses to local group composition. J Exp Mar Biol Ecol 204, 155–167.Google Scholar
  99. Webster, K.A., Schach, U., Ordaz, A., Steinfeld, J.S., Draper, B.W., and Siegfried, K.R. (2017). Dmrt1 is necessary for male sexual development in zebrafish. Dev Biol 422, 33–46.Google Scholar
  100. Wilson, C.A., High, S.K., McCluskey, B.M., Amores, A., Yan, Y., Titus, T. A., Anderson, J.L., Batzel, P., Carvan, M.J., Schartl, M., et al. (2014). Wild sex in zebrafish: loss of the natural sex determinant in domesticated strains. Genetics 198, 1291–1308.Google Scholar
  101. Xiong, S., Jing, J., Wu, J., Ma, W., Dawar, F.U., Mei, J., and Gui, J.F. (2015). Characterization and sexual dimorphic expression of Cytochrome P450 genes in the hypothalamic–pituitary–gonad axis of yellow catfish. General Comp Endocrinology 216, 90–97.Google Scholar
  102. Yamamoto, Y., Zhang, Y., Sarida, M., Hattori, R.S., and Strüssmann, C.A. (2014). Coexistence of genotypic and temperature-dependent sex determination in pejerrey Odontesthes bonariensis. PLoS ONE 9, e102574.Google Scholar
  103. Yang, Y.J., Wang, Y., Li, Z., Zhou, L., and Gui, J.F. (2017). Sequential, Divergent, and Cooperative Requirements ofFoxl2a andFoxl2b in Ovary Development and Maintenance of Zebrafish. Genetics 205, 1551–1572.Google Scholar
  104. Yano, A., Guyomard, R., Nicol, B., Jouanno, E., Quillet, E., Klopp, C., Cabau, C., Bouchez, O., Fostier, A., and Guiguen, Y. (2012). An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr Biol 22, 1423–1428.Google Scholar
  105. Yoshida, K., Terai, Y., Mizoiri, S., Aibara, M., Nishihara, H., Watanabe, M., Kuroiwa, A., Hirai, H., Hirai, Y., Matsuda, Y., et al. (2010). B chromosomes have a functional effect on female sex determination in Lake Victoria cichlid fishes. PLoS Genet 7, e1002203.Google Scholar
  106. Yoshimoto, S., Ikeda, N., Izutsu, Y., Shiba, T., Takamatsu, N., and Ito, M. (2010). Opposite roles of DMRT1 and its W-linked paralogue, DM-W, in sexual dimorphism of Xenopus laevis: implications of a ZZ/ZW-type sex-determining system. Development 137, 2519–2526.Google Scholar
  107. Yoshimoto, S., and Ito, M. (2011). A ZZ/ZW-type sex determination inXenopuslaevis. FEBS J 278, 1020–1026.Google Scholar
  108. Yoshimoto, S., Okada, E., Umemoto, H., Tamura, K., Uno, Y., Nishida- Umehara, C., Matsuda, Y., Takamatsu, N., Shiba, T., and Ito, M. (2008). A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc Natl Acad Sci USA 105, 2469–2474.Google Scholar
  109. Zhang, J., Sun, M., Zhou, L., Li, Z., Liu, Z., Li, X.Y., Liu, X.L., Liu, W., and Gui, J.F. (2015). Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio. Sci Rep 5, 10898.Google Scholar
  110. Zhang, X., Li, M., Ma, H., Liu, X., Shi, H., Li, M., and Wang, D. (2017). Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX Nile tilapia. Endocrinology 158, 2634–2647.Google Scholar
  111. Zhou, L., and Gui, J. (2017). Natural and artificial polyploids in aquaculture. Aquaculture Fisheries 2, 103–111.Google Scholar
  112. Zhou, L., Wang, Z.W., Wang, Y., and Gui, J.F. (2018). Crucian carp and gibel carp culture. In: Aquaculture in China: Success Stories and Modern Trends, J.F. Gui, Q.S. Tang, Z.J. Li, J.S. Liu, S.S. De Silva, eds. (Oxford: John Wiley & Sons Ltd.), pp. 149–157.Google Scholar
  113. Zhu, Y.J., Li, X.Y., Zhang, J., Li, Z., Ding, M., Zhang, X.J., Zhou, L., and Gui, J.F. (2018). Distinct sperm nucleus behaviors between genotypic and temperature-dependent sex determination males are associated with replication and expression-related pathways in a gynogenetic fish. BMC Genomics 19, 437.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, The Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina

Personalised recommendations