Advertisement

Science China Life Sciences

, Volume 62, Issue 1, pp 22–45 | Cite as

Establishment and application of distant hybridization technology in fish

  • Shi Wang
  • Chenchen Tang
  • Min Tao
  • Qinbo Qin
  • Chun Zhang
  • Kaikun Luo
  • Rurong Zhao
  • Jing Wang
  • Li Ren
  • Jun Xiao
  • Fangzhou Hu
  • Rong Zhou
  • Wei Duan
  • Shaojun LiuEmail author
Review
  • 32 Downloads

Abstract

Hybridization is widely used. However, for a long time, systematic theories and technologies related to hybridization in fish have been lacking. In this study, through long-term systematic research, we investigated and obtained the main rules regarding inheritance and reproduction related to fish distant hybridization. Furthermore, we established one-step and multistep breeding technologies that were suitable for interspecific hybridization and intraspecific hybridization. Simultaneously, we used these two breeding technologies to produce a batch of diploid fish lineages and tetraploid fish lineages and improved fishes. In addition, we widely discuss the methods, technologies and results of hybridization breeding, referring to the domestic and foreign literature on fish hybridization. We hope that this paper will be beneficial for the research and application of fish hybrid breeding.

Keywords

fish distant hybridization intraspecific hybridization breeding technology lineage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31730098, 31430088, and 31802287), the Earmarked Fund for China Agriculture Research System (CARS-45), the Key Research and Development Program of Hunan Province (2018NK2072), Hunan Provincial Natural Science and Technology Major Project (2017NK1031), and the Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province (20134486).

References

  1. Ansai, S., Inohaya, K., Yoshiura, Y., Schartl, M., Uemura, N., Takahashi, R., and Kinoshita, M. (2014). Design, evaluation, and screening methods for efficient targeted mutagenesis with transcription activatorlike effector nucleases in medaka. Dev Growth Differ 56, 98–107.Google Scholar
  2. Ansai, S., Sakuma, T., Yamamoto, T., Ariga, H., Uemura, N., Takahashi, R., and Kinoshita, M. (2013). Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases. Genetics 193, 739–749.Google Scholar
  3. Arai, K., Ikeno, M., and Suzuki, R. (1995). Production of androgenetic diploid loach Misgurnus anguillicaudatus using spermatozoa of natural tetraploids. Aquaculture 137, 131–138.Google Scholar
  4. Babiak, I., Dobosz, S., Goryczko, K., Kuzminski, H., Brzuzan, P., and Ciesielski, S. (2002). Androgenesis in rainbow trout using cryopreserved spermatozoa: the effect of processing and biological factors. Theriogenology 57, 1229–1249.Google Scholar
  5. Cao, M., Chen, J., Peng, W., Wang, Y., Liao, L., Li, Y., Trudeau, V.L., Zhu, Z., and Hu, W. (2014). Effects of growth hormone over-expression on reproduction in the common carp Cyprinus carpio L. Gen Comp Endocr 195, 47–57.Google Scholar
  6. Cao, L., Qin, Q., Xiao, Q., Yin, H., Wen, J., Liu, Q., Huang, X., Huo, Y., Tao, M., Zhang, C., et al. (2018). Nucleolar dominance in a tetraploidy hybrid lineage derived from Carassius auratus red var. (♀) × Megalobrama amblycephala (♂). Front Genet 9, 386.Google Scholar
  7. Chakrapani, V., Patra, S.K., Panda, R.P., Rasal, K.D., Jayasankar, P., and Barman, H.K. (2016). Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/Cas9. Dev Comp Immunol 61, 242–247.Google Scholar
  8. Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J.W., and Xi, J.J. (2013). Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23, 465–472.Google Scholar
  9. Chen, J., Luo, M., Li, S., Tao, M., Ye, X., Duan, W., Zhang, C., Qin, Q., Xiao, J., and Liu, S. (2017). A comparative study of distant hybridization in plants and animals. Sci China Life Sci 61, 285–309.Google Scholar
  10. Chen, J., Wang, W., Tian, Z., Dong, Y., Dong, T., Zhu, H., Zhu, Z., Hu, H., and Hu, W. (2018). Efficient gene transfer and gene editing in sterlet (Acipenser ruthenus). Front Genet 9, 117.Google Scholar
  11. Chiang, Y.A., Kinoshita, M., Maekawa, S., Kulkarni, A., Lo, C.F., Yoshiura, Y., Wang, H.C., and Aoki, T. (2016). TALENs-mediated gene disruption of myostatin produces a larger phenotype of medaka with an apparently compromised immune system. Fish Shellfish Immunol 48, 212–220.Google Scholar
  12. Chu, L., Li, J., Liu, Y., Hu, W., and Cheng, C.H.K. (2014). Targeted gene disruption in zebrafish reveals noncanonical functions of LH signaling in reproduction. Mol Endocr 28, 1785–1795.Google Scholar
  13. Cossins, A.R., and Crawford, D.L. (2005). Fish as models for environmental genomics. Nat Rev Genet 6, 324–333.Google Scholar
  14. Dai, J., Cui, X., Zhu, Z., and Hu, W. (2010). Non-homologous end joining plays a key role in transgene concatemer formation in transgenic zebrafish embryos. Int J Biol Sci 6, 756–768.Google Scholar
  15. Doyon, Y., McCammon, J.M., Miller, J.C., Faraji, F., Ngo, C., Katibah, G. E., Amora, R., Hocking, T.D., Zhang, L., Rebar, E.J., et al. (2008). Heritable targeted gene disruption in zebrafish using designed zincfinger nucleases. Nat Biotechnol 26, 702–708.Google Scholar
  16. Duan, W., Qin, Q., Chen, S., Liu, S., Wang, J., Zhang, C., Sun, Y., and Liu, Y. (2007). To produce improved allotetraploid hybrids of common carp×red crucian carp with androgenesis. Sci Sin Vitae 37, 530–539.Google Scholar
  17. Duan, W., Xu, K., Hu, F., Zhang, Y., Wen, M., Wang, J., Tao, M., Luo, K., Zhao, R., Qin, Q., et al. (2016). Comparative proteomic, physiological, morphological, and biochemical analyses reveal the characteristics of the diploid spermatozoa of allotetraploid hybrids of red crucian carp (Carassius auratus) and common carp (Cyprinus carpio). Biol Reprod 94, 35.Google Scholar
  18. Dunham, R.A. (2009). Transgenic fish resistant to infectious diseases, their risk and prevention of escape into the environment and future candidate genes for disease transgene manipulation. Comp Immunol Microbiol Infect Dis 32, 139–161.Google Scholar
  19. Dunham, R.A., and Argue, B.J. (1998). Seinability of channel catfish, blue catfish, and their F1, F2, F3, and backcross hybrids in earthen ponds. Progive Fish-Culturist 60, 214–220.Google Scholar
  20. Fang, Q., and Gui, J. (2017). Allogyogenetics silver crucian carp “CAS V” is expected to resist gill bleeding. Ocean Fishery, 23.Google Scholar
  21. Felip, A., Zanuy, S., Carrillo, M., and Piferrer, F. (2001). Induction of triploidy and gynogenesis in teleost fish with emphasis on marine species. Genetica 111, 175–195.Google Scholar
  22. Feng, H., Fu, Y., Luo, J., Wu, H., Liu, Y., and Liu, S. (2011). Transgenic tetraploid carp with GH gene. Sci China Life Sci 41, 202–209.Google Scholar
  23. Feng, K., Luo, H., Li, Y., Chen, J., Wang, Y., Sun, Y., Zhu, Z., and Hu, W. (2017). High efficient gene targeting in rice field eel Monopterus albus by transcription activator-like effector nucleases. Sci Bull 62, 162–164.Google Scholar
  24. Fu, C., Cui, Y., Hung, S.S.O., and Zhu, Z. (1998). Growth and feed utilization by F4 human growth hormone transgenic carp fed diets with different protein levels. J Fish Biol 53, 115–129.Google Scholar
  25. Fu, C., Hu, W., Wang, Y., and Zhu, Z. (2005). Developments in transgenic fish in the People’s Republic of China. Rev Sci Tech OIE 24, 299–307.Google Scholar
  26. Gao, J., Sun, X., and Liang, L. (2006). RAPD analysis of second filial generation derived from Boshi carp and frigid-resistance strain of red purse carp. J Shanghai Ocean Univ 15, 414–418.Google Scholar
  27. Gaylord, T.G., and Gatlin Iii, D.M. (2000). Dietary lipid level but not lcarnitine affects growth performance of hybrid striped bass (Morone chrysops ♀× M. saxatilis ♂). Aquaculture 190, 237–246.Google Scholar
  28. Geng, F.S., Zhou, L., and Gui, J.F. (2005). Construction and characterization of a BAC library for Carassius auratus gibelio, a gynogenetic polyploid fish. Animal Genets 36, 535–536.Google Scholar
  29. Gheyas, A.A., Woolliams, J.A., Taggart, J.B., Sattar, M.A., Das, T.K., McAndrew, B.J., and Penman, D.J. (2009). Heritability estimation of silver carp (Hypophthalmichthys molitrix) harvest traits using microsatellite based parentage assignment. Aquaculture 294, 187–193.Google Scholar
  30. Guan, B., Ma, H., Wang, Y., Hu, Y., Lin, Z., Zhu, Z., and Hu, W. (2011). Vitreoscilla hemoglobin (VHb) overexpression increases hypoxia tolerance in zebrafish (Danio rerio). Mar Biotechnol 13, 336–344.Google Scholar
  31. Gui, J.F., and Zhou, L. (2010). Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio. Sci China Life Sci 53, 409–415.Google Scholar
  32. He, W., Qin, Q., Liu, S., Li, T., Wang, J., Xiao, J., Xie, L., Zhang, C., and Liu, Y. (2012). Organization and variation analysis of 5S rDNA in different ploidy-level hybrids of red crucian carp × topmouth culter. PLoS ONE 7, e38976.Google Scholar
  33. He, W., Xie, L., Li, T., Liu, S., Xiao, J., Hu, J., Wang, J., Qin, Q., and Liu, Y. (2013). The formation of diploid and triploid hybrids of female grass carp × male blunt snout bream and their 5S rDNA analysis. BMC Genet 14, 110.Google Scholar
  34. He, Z., Liu, S., Xiao, J., Hu, F., Wen, M., Ye, L., Zhang, C., Xu, K., Tao, M., and Luo, K. (2014). Analysis of muscle nutritional components of diploid hybrids derived from female (Megalobrama amblycephala (♀) × Erythroculter ilishaeformis (♂))×male Megalobrama amblycephala and its parents. J Fisheries China 38, 1786–1792.Google Scholar
  35. Hong, W., and Zhang, Q. (2003). Review of captive bred species and fry production of marine fish in China. Aquaculture 227, 305–318.Google Scholar
  36. Hong, Y., Chen, S., Gui, J., and Schartl, M. (2004). Retention of the developmental pluripotency in medaka embryonic stem cells after gene transfer and long-term drug selection for gene targeting in fish. Transgenic Res 13, 41–50.Google Scholar
  37. Houdebine, L.M., and Chourrout, D. (1991). Transgenesis in fish. Experientia 47, 891–897.Google Scholar
  38. Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C., and Schmid, B. (2013). Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140, 4982–4987.Google Scholar
  39. Hu, F., Wu, C., Zhou, Y., Cao, L., Xiao, J., Wang, S., Wu, Y., Ren, L., Liu, Q., Li, W., et al. (2018). Production of androgenetic, triploid and tetraploid hybrids from the interspecific hybridization of female Japanese crucian carp and male blunt snout bream. Aquaculture 491, 50–58.Google Scholar
  40. Hu, J., Liu, S., Xiao, J., Zhou, Y., You, C., He, W., Zhao, R., Song, C., and Liu, Y. (2012). Characteristics of diploid and triploid hybrids derived from female Megalobrama amblycephala Yih×male Xenocypris davidi Bleeker. Aquaculture 364–365, 157–164.Google Scholar
  41. Hu, W., Li, S., Tang, B., Wang, Y., Lin, H., Liu, X., Zou, J., and Zhu, Z. (2007a). Antisense for gonadotropin-releasing hormone reduces gonadotropin synthesis and gonadal development in transgenic common carp (Cyprinus carpio). Aquaculture 271, 498–506.Google Scholar
  42. Hu, W., Wang, Y., Chen, S., and Zhu, Z. (2002). Nuclear transplantation in different strains of zebrafish. Chin Sci Bull 47, 1277.Google Scholar
  43. Hu, W., Wang, Y., and Zhu, Z. (2007b). Advances in ecological risk assessment and countermeasures of transgenic fish. Sci China C 37, 377–381.Google Scholar
  44. Hu, W., and Zhu, Z.Y. (2010). Integration mechanisms of transgenes and population fitness of GH transgenic fish. Sci China Life Sci 53, 401–408.Google Scholar
  45. Hubbs, C., Drewry, G.E., and Warburton, B. (1959). Occurrence and morphology of a phenotypic male of a gynogenetic fish. Science 129, 1227–1229.Google Scholar
  46. Hulata, G. (1995). A review of genetic improvement of the common carp (Cyprinus carpio L.) and other cyprinids by crossbreeding, hybridization and selection. Aquaculture 129, 143–155.Google Scholar
  47. Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R.J., and Joung, J.K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31, 227–229.Google Scholar
  48. Jin, W., Zhao, J., Yang, J., Gao, Y., Zhu, Z., and Yu, L. (2016). No. 2 of Tianjin new common carp. China Fisheries, 61–63.Google Scholar
  49. Karpechenko, G.D. (1927). The production of polyploid gametes in hybrids. Hereditas 9, 349–368.Google Scholar
  50. Kause, A., Ritola, O., Paananen, T., Wahlroos, H., and Mäntysaari, E.A. (2005). Genetic trends in growth, sexual maturity and skeletal deformations, and rate of inbreeding in a breeding programme for rainbow trout (Oncorhynchus mykiss). Aquaculture 247, 177–187.Google Scholar
  51. Komen, H., and Thorgaard, G.H. (2007). Androgenesis, gynogenesis and the production of clones in fishes: a review. Aquaculture 269, 150–173.Google Scholar
  52. Li, C. (1994). Precious fish cultivation technique series (10)-furong common carp. Curr Fisheries, 29–30.Google Scholar
  53. Li, C., Xu, M., Zhao, J., Qian, Y., Qian, D., and Wu, C. (2014). Microsatellite analysis of genetic characteristics in Siniperca schezeri (♀) × S. chuatsi (♂) hybrids. China Fisheries Sci, 97–102.Google Scholar
  54. Li, D., Fu, C., Wang, Y., Zhu, Z., and Hu, W. (2011). The hematological response to exhaustive exercise in “all-fish” growth hormone transgenic common carp (Cyprinus carpio L.). Aquaculture 311, 263–268.Google Scholar
  55. Li, H. (2013). Hybrid Culter alburnus “Pioneer 1”. China Rural Mag, 47.Google Scholar
  56. Li, M., Yang, H., Zhao, J., Fang, L., Shi, H., Li, M., Sun, Y., Zhang, X., Jiang, D., Zhou, L., et al. (2014). Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics 197, 591–599.Google Scholar
  57. Li, S., Yan, B., Cai, W., Li, T., Jia, J., and Zhang, Y. (2008). Evaluation of growth, salt tolerance and parental heterosis contribution in reciprocal hybrids F2 from Oreochromis niloticus and Sarotherodon melanotheron. J Fisheries China 32, 335–341.Google Scholar
  58. Li, W., Liu, J., Tan, H., Luo, L., Cui, J., Hu, J., Wang, S., Liu, Q., Hu, F., Tang, C., et al. (2018). Asymmetric expression patterns reveal a strong maternal effect and dosage compensation in polyploid hybrid fish. BMC Genom 19, 517.Google Scholar
  59. Liu, J., and Yang, G. (2009). Changes in copper content of allogynogenetic silver crucian carp after application of copper sulfate to fishponds. Israeli J Aquacul-Bamidgeh 61, 351–355.Google Scholar
  60. Liu, Q., Wang, J., Xiao, J., Chen, X., Qi, Y., Li, W., Tao, M., Zhang, C., Qin, Q., and Luo, K. (2017). Analysis of muscle nutrient components of crucian carp hybrid of Carassius auratus cuvieri (♀))×Carassius auratus red var. (♂) and its parents. J Fisheries China 41, 1133–1139.Google Scholar
  61. Liu, S.J. (2010). Distant hybridization leads to different ploidy fishes. Sci China Life Sci 53, 416–425.Google Scholar
  62. Liu, S. (2014). Fish Distant Hybridization. (Beijing: China Social Sciences Press).Google Scholar
  63. Liu, S.J., Duan, W., Tao, M., Zhang, C., Sun, Y.D., Shen, J.M., Wang, J., Luo, K.K., and Liu, Y. (2007a). Establishment of the diploid gynogenetic hybrid clonal line of red crucian carp×common carp. Sci China Ser C 50, 186–193.Google Scholar
  64. Liu, S., Liu, Y., Zhou, G., Zhang, X., Luo, C., Feng, H., He, X., Zhu, G., and Yang, H. (2001). The formation of tetraploid stocks of red crucian carp×common carp hybrids as an effect of interspecific hybridization. Aquaculture 192, 171–186.Google Scholar
  65. Liu, S., Luo, J., Chai, J., Ren, L., Zhou, Y., Huang, F., Liu, X., Chen, Y., Zhang, C., Tao, M., et al. (2016). Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish×common carp cross. Proc Natl Acad Sci USA 113, 1327–1332.Google Scholar
  66. Liu, S., Qin, Q., Wang, Y., Zhang, H., Zhao, R., Zhang, C., Wang, J., Li, W., Chen, L., Xiao, J., et al. (2010). Evidence for the formation of the male gynogenetic fish. Mar Biotechnol 12, 160–172.Google Scholar
  67. Liu, S., Qin, Q., Xiao, J., Lu, W., Shen, J., Li, W., Liu, J., Duan, W., Zhang, C., Tao, M., et al. (2007b). The formation of the polyploid hybrids from different subfamily fish crossings and its evolutionary significance. Genetics 176, 1023–1034.Google Scholar
  68. Liu, S., Sun, Y., Zhang, C., Luo, K., and Liu, Y. (2004). Production of gynogenetic progeny from allotetraploid hybrids red crucian carp×common carp. Aquaculture 236, 193–200.Google Scholar
  69. Liu, Y.G., Chen, S.L., Li, B.F., Wang, Z.J., and Liu, Z. (2005). Analysis of genetic variation in selected stocks of hatchery flounder, Paralichthys olivaceus, using AFLP markers. Biochem Systatics Ecol 33, 993–1005.Google Scholar
  70. Liu, Y. (1993). Reproductive Physiology of Chinese Cultured Fish. (Beijing: Chinese Agricultural Press).Google Scholar
  71. Liu, Y., Luo, D., Lei, Y., Hu, W., Zhao, H., and Cheng, C.H.K. (2014). A highly effective TALEN-mediated approach for targeted gene disruption in Xenopus tropicalis and zebrafish. Methods 69, 58–66.Google Scholar
  72. Liu, Z. (1991). Genetics. (Beijing: Higher Education Press).Google Scholar
  73. Liu, Z., Zhou, Y., Liu, S., Zhao, Q., Feng, J., Lu, S., Xiong, G., Xie, D., Zhang, J., and Liu, Y. (2014b). Characterization and dietary regulation of oligopeptide transporter (PepT1) in different ploidy fishes. Peptides 52, 149–156.Google Scholar
  74. Long, Y., Liu, S., Huang, W., Zhang, J., Sun, Y., Zhang, C., Chen, S., Liu, J., and Liu, Y. (2006). Comparative studies on histological and ultrastructure of the pituitary of different ploidy level fishes. Sci China Ser C-Lfie Sci 49, 446–453.Google Scholar
  75. Long, Y., Tao, M., Liu, S., Zhong, H., Chen, L., Tao, S., and Liu, Y. (2009a). Differential expreßsion of Gnrh2, Gthβ, and Gthr genes in sterile triploids and fertile tetraploids. Cell Tissue Res 338, 151–159.Google Scholar
  76. Long, Y., Zhong, H., Liu, S., Tao, M., Chen, L., Xiao, J., and Liu, Y. (2009b). Molecular characterization and genetic analysis of Gnrh2 and Gthß in different ploidy level fishes. Prog Nat Sci 19, 1569–1579.Google Scholar
  77. Lou, Y.D. (2009). Fish Breeding. (Beijing: China Agriculture Press).Google Scholar
  78. Lou, Y., and Li, X. (2006). Research on fish distant hybridization and its application in aquaculture. J Fishery Sci China 13, 151–158.Google Scholar
  79. Lu, X., Sun, J., Wang, H., Luo, D., Hou, X., Liu, L., and Li, G. (2013). Observations on embryonic development of reciprocal hybrids of Siniperca kneri Garman×Siniperca chuatsi Basilewsky and F2 of S. kneri females×S. chuatsi males F1. J Fishery Sci China 20, 975–981.Google Scholar
  80. Meng, Y., and Wei, M. (2011). Xingguo red common carp and scattered mirror carp pure breeding. Beijing Agriculture 9.Google Scholar
  81. Morgan, A.J., Murashige, R., Woolridge, C.A., Adam Luckenbach, J., Watanabe, W.O., Borski, R.J., Godwin, J., and Daniels, H.V. (2006). Effective UV dose and pressure shock for induction of meiotic gynogenesis in southern flounder (Paralichthys lethostigma) using black sea bass (Centropristis striata) sperm. Aquaculture 259, 290–299.Google Scholar
  82. Moss, S.M., Moss, D.R., Arce, S.M., Lightner, D.V., and Lotz, J.M. (2012). The role of selective breeding and biosecurity in the prevention of disease in penaeid shrimp aquaculture. J Invertebr Pathol 110, 247–250.Google Scholar
  83. Ning, Y., Liu, X., Wang, Z.Y., Guo, W., Li, Y., and Xie, F. (2007). A genetic map of large yellow croaker Pseudosciaena crocea. Aquaculture 264, 16–26.Google Scholar
  84. Piferrer, F., Cal, R.M., Gómez, C., Álvarez-Blázquez, B., Castro, J., and Martinez, P. (2004). Induction of gynogenesis in the turbot (Scophthalmus maximus): effects of UV irradiation on sperm motility, the Hertwig effect and viability during the first 6 months of age. Aquaculture 238, 403–419.Google Scholar
  85. Qian, Y., Wu, C., Zhao, J., and Qian, D. (2016). Siniperca chuatsi (♀)×Siniperca scherzeri (♂). China Fisheries, 58–60.Google Scholar
  86. Qin, Q., He, W., Liu, S., Wang, J., Xiao, J., and Liu, Y. (2010). Analysis of 5S rDNA organization and variation in polyploid hybrids from crosses of different fish subfamilies. J Exp Zool 314B, 403–411.Google Scholar
  87. Qin, Q., Wang, Y., Wang, J., Dai, J., Xiao, J., Hu, F., Luo, K., Tao, M., Zhang, C., Liu, Y., et al. (2014). The autotetraploid fish derived from hybridization of Carassius auratus red var. (female)×Megalobrama amblycephala (male). Biol Reprod 91, 93.Google Scholar
  88. Qin, Z., Li, Y., Su, B., Cheng, Q., Ye, Z., Perera, D.A., Fobes, M., Shang, M., and Dunham, R.A. (2016). Editing of the luteinizing hormone gene to sterilize channel catfish, Ictalurus punctatus, using a modified zinc finger nuclease technology with electroporation. Mar Biotechnol 18, 255–263.Google Scholar
  89. Rembold, M., Lahiri, K., Foulkes, N.S., and Wittbrodt, J. (2006). Transgenesis in fish: efficient selection of transgenic fish by coinjection with a fluorescent reporter construct. Nat Protoc 1, 1133–1139.Google Scholar
  90. Ren, L., Cui, J., Wang, J., Tan, H., Li, W., Tang, C., Qin, Q., and Liu, S. (2017a). Analyzing homoeolog expression provides insights into the rediploidization event in gynogenetic hybrids of Carassius auratus red var. × Cyprinus carpio. Sci Rep 7, 13679.Google Scholar
  91. Ren, L., Li, W., Tao, M., Qin, Q., Luo, J., Chai, J., Tang, C., Xiao, J., Tang, X., Lin, G., et al. (2016). Homoeologue expression insights into the basis of growth heterosis at the intersection of ploidy and hybridity in Cyprinidae. Sci Rep 6, 27040.Google Scholar
  92. Ren, L., Tang, C., Li, W., Cui, J., Tan, X., Xiong, Y., Chen, J., Wang, J., Xiao, J., Zhou, Y., et al. (2017b). Determination of dosage compensation and comparison of gene expression in a triploid hybrid fish. BMC Genom 18, 38.Google Scholar
  93. Rezk, M.A., Smitherman, R.O., Williams, J.C., Nichols, A., Kucuktas, H., and Dunham, R.A. (2003). Response to three generations of selection for increased body weight in channel catfish, Ictalurus punctatus, grown in earthen ponds. Aquaculture 228, 69–79.Google Scholar
  94. Rieseberg, L.H., Raymond, O., Rosenthal, D.M., Lai, Z., Livingstone, K., Nakazato, T., Durphy, J.L., Schwarzbach, A.E., Donovan, L.A., and Lexer, C. (2003). Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301, 1211–1216.Google Scholar
  95. Rieseberg, L.H., van Fossen, C., and Desrochers, A.M. (1995). Hybrid speciation accompanied by genomic reorganization in wild sunflowers. Nature 375, 313–316.Google Scholar
  96. Scheerer, P.D., Thorgaard, G.H., Allendorf, F.W., and Knudsen, K.L. (1986). Androgenetic rainbow trout produced from inbred and outbred sperm sources show similar survival. Aquaculture 57, 289–298.Google Scholar
  97. Schwartz, F.J. (1981). World literature to fish hybrids with an analysis by family, species, and hybrid: supplement 1. NOAA Technical Report NMFS SSRF 750.Google Scholar
  98. Shi, F., Zhang, J., Zhao, L., and Tong, W. (2014). Comparative test of breeding “Danfa Turbot” and common turbot. China Fisheries, 60–61.Google Scholar
  99. Shu, Y., Lou, Q., Dai, Z., Dai, X., He, J., Hu, W., and Yin, Z. (2016). The basal function of teleost prolactin as a key regulator on ion uptake identified with zebrafish knockout models. Sci Rep 6, 18597.Google Scholar
  100. Song, C., Liu, S.J., Xiao, J., He, W.G., Zhou, Y., Qin, Q.B., Zhang, C., and Liu, Y. (2012). Polyploid organisms. Sci China Life Sci 55, 301–311.Google Scholar
  101. Stanley, J.G. (1976). Production of hybrid, androgenetic, and gynogenetic grass carp and carp. Trans Am Fisheries Soc 105, 10–16.Google Scholar
  102. Sun, Y., Zhang, C., Liu, S., Duan, W., and Liu, Y. (2007). Induced interspecific androgenesis using diploid sperm from allotetraploid hybrids of common carp×red crucian carp. Aquaculture 264, 47–53.Google Scholar
  103. Sun, Y.D., Zhang, C., Liu, S.J., Tao, M., Zeng, C., and Liu, Y. (2006). Induction of gynogenesis in Japanese crucian carp (Carassius cuvieri). Acta Geneta Sin 33, 405–412.Google Scholar
  104. Sun, Y. D., Tao, M., Liu, S., Zeng, C., Duan, W., Shen, J., Wang, J., Zeng, C., and Long, Y. Liu Y. (2007). Induction of gynogenesis in red crucian carp using spermatozoa of blunt snout bream. Prog Nat Sc 17, 163–167.Google Scholar
  105. Tang, G., Zeng, C., Qi, Z., Xu, W., and Zhao, Y. (2006). Biological characteristics and breeding prospect of hybrid tilapia. J Hydrogeol 26, 70–71.Google Scholar
  106. Tang, H., Liu, Y., Luo, D., Ogawa, S., Yin, Y., Li, S., Zhang, Y., Hu, W., Parhar, I.S., Lin, H., et al. (2014). The kiss/kissr systems are dispensable for zebrafish reproduction: evidence from gene knockout studies. Endocrinology 156, 589–599.Google Scholar
  107. Thorgaard, G.H., Scheerer, P.D., Hershberger, W.K., and Myers, J.M. (1990). Androgenetic rainbow trout produced using sperm from tetraploid males show improved survival. Aquaculture 85, 215–221.Google Scholar
  108. Wang, C., Xia, D., Hu, M., and Wang, H. (1989). Studies on the hybids of (S, nilotica ♀×S, aureao ♂) with heterosis. Freshw Fisheries, 14–15.Google Scholar
  109. Wang, D., Mao, H., Peng, J., Li, X., Zhou, L., and Gui, J. (2009). Discovery of a male-biased mutant family and identification of a male-specific SCAR marker in gynogenetic gibel carp Carassius auratus gibelio. Prog Nat Sci 19, 1537–1544.Google Scholar
  110. Wang, J., Liu, Q., Luo, K., Chen, X., Xiao, J., Zhang, C., Tao, M., Zhao, R., and Liu, S. (2016). Cell fusion as the formation mechanism of unreduced gametes in the gynogenetic diploid hybrid fish. Sci Rep 6, 31658.Google Scholar
  111. Wang, J., Xiao, J., Zeng, M., Xu, K., Tao, M., Zhang, C., Duan, W., Liu, W. B., Luo, K.K., Liu, Y., et al. (2015a). Genomic variation in the hybrids of white crucian carp and red crucian carp: evidence from ribosomal DNA. Sci China Life Sci 58, 590–601.Google Scholar
  112. Wang, J., Ye, L.H., Liu, Q.Z., Peng, L.Y., Liu, W., Yi, X.G., Wang, Y.D., Xiao, J., Xu, K., Hu, F.Z., et al. (2015b). Rapid genomic DNA changes in allotetraploid fish hybrids. Heredity 114, 601–609.Google Scholar
  113. Wang, S., Ye, X., Wang, Y., Chen, Y., Lin, B., Yi, Z., Mao, Z., Hu, F., Zhao, R., Wang, J., et al. (2017). A new type of homodiploid fish derived from the interspecific hybridization of female common carp × male blunt snout bream. Sci Rep 7, 4189.Google Scholar
  114. Wang, Y., Yang, C., Luo, K., Zhang, M., Qin, Q., Huo, Y., Song, J., Tao, M., Zhang, C., Liu, S. (2018). The formation of the goldfish-like fish derived from hybridization of female koi carp × male blunt snout bream. Front Genet 9, 437.Google Scholar
  115. Wang, Z.W., Zhu, H.P., Wang, D., Jiang, F.F., Guo, W., Zhou, L., and Gui, J.F. (2011). A novel nucleo-cytoplasmic hybrid clone formed via androgenesis in polyploid gibel carp. BMC Res Notes 4, 82.Google Scholar
  116. Wei, J., Zhao, J., Wu, J., Luo, M., Ye, W., Fu, Y., and Chen, H. (2016). Genetic characterization of Oreochromis niloticus (♀)×Sarotherodon melanotheron (♂) hybrid F2 and F3 by microsatellite analysis. South China Fisheries Sci 12, 30–35.Google Scholar
  117. Wei, W.H., Zhang, J., Zhang, Y.B., Zhou, L., and Gui, J.F. (2003). Genetic heterogeneity and ploidy level analysis among different gynogenetic clones of the polyploid gibel carp. Cytometry 56A, 46–52.Google Scholar
  118. Wohlfarth, G.W., Moav, R., and Hulata, G. (1983). A genotypeenvironment interaction for growth rate in the common carp, growing in intensively manured ponds. Aquaculture 33, 187–195.Google Scholar
  119. Wu, G., Sun, Y., and Zhu, Z. (2003). Growth hormone gene transfer in common carp. Aquat Living Res 16, 416–420.Google Scholar
  120. Xiao, J., Kang, X., Xie, L., Qin, Q., He, Z., Hu, F., Zhang, C., Zhao, R., Wang, J., Luo, K., et al. (2014). The fertility of the hybrid lineage derived from female Megalobrama amblycephala×male Culter alburnus. Animal Reprod Sci 151, 61–70.Google Scholar
  121. Xiao, J., Hu, F., Luo, K., Li, W., Liu, S. (2016). Unique nucleolar dominance patterns in distant hybrid lineage derived from Megalobrama amblycephala × Culter alburnus. BMC Genet 17, 150.Google Scholar
  122. Xie, J., Wen, J.J., Chen, B., and Gui, J.F. (2001). Differential gene expression in fully-grown oocytes between gynogenetic and gonochoristic crucian carps. Gene 271, 109–116.Google Scholar
  123. Xie, J., Zhu, Y., Zhang, F., and Gui, J. (1999). Differential gene expression of protein kinases in oocytes between natural gynogenetic silver crucian carp and amphimictic crucian carp. Chin Sci Bull 44, 1297–1301.Google Scholar
  124. Xu, K., Duan, W., Xiao, J., Tao, M., Zhang, C., Liu, Y., and Liu, S.J. (2015). Development and application of biological technologies in fish genetic breeding. Sci China Life Sci 58, 187–201.Google Scholar
  125. Xu, X. (1984). An overview of studies on all male tilapia crossbreeding abroad. Fisheries Sci Technol Infor, 28–31.Google Scholar
  126. Yang, L., Yang, S.T., Wei, X.H., and Gui, J.F. (2001). Genetic diversity among different clones of the gynogenetic silver crucian carp, Carassius auratus gibelio, revealed by transferrin and isozyme markers. Biochem Genets 39, 213–225.Google Scholar
  127. Yu, F., Xiao, J., Liang, X., Liu, S., Zhou, G., Luo, K., Liu, Y., Hu, W., Wang, Y., and Zhu, Z. (2010). The rapid growth and sterility of the transgenic triploid carp. Chin Sci Bull 55, 1987–1992.Google Scholar
  128. Yu, H. (2016). Ietalurus Punetaus “Jiangfeng I”. China Rural Mag, 38.Google Scholar
  129. Yuan, Y., Liang, X., Tian, C., Yan, W., Cai, W., Dou, Y., and Yi, T. (2014). Identification of embryonic development hybrids F1 of Siniperca chuatsi (♀)×Siniperca schezeri (♂) and its F2. Hubei Agricul Sci 53, 4920–4923.Google Scholar
  130. Zhang, H., Liu, S.J., Zhang, C., Tao, M., Peng, L.Y., You, C.P., Xiao, J., Zhou, Y., Zhou, G.J., Luo, K.K., et al. (2011). Induced gynogenesis in grass carp (Ctenopharyngodon idellus) using irradiated sperm of allotetraploid hybrids. Mar Biotechnol 13, 1017–1026.Google Scholar
  131. Zhang, H., Liu, X., Zhang, Y., Chen, G., and Cai, C. (2018). Epinephelus fuscoguttatus (♀)×Epinephelus lanceolatus (♂). China Fisheries, 75–78.Google Scholar
  132. Zhang, J. (1985). A study of reciprocal cross hybrids and backcross hybrids of Cyprinus carpio Red var. wuyuanensis with Cyprinus carpio yuanjiang and the economic benefit in F2. J Fisheries China 9, 375–382.Google Scholar
  133. Zhang, J., Sun, M., Zhou, L., Li, Z., Liu, Z., Li, X.Y., Liu, X.L., Liu, W., and Gui, J.F. (2015). Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio. Sci Rep 5, 10898.Google Scholar
  134. Zhang, J., and Sun, X. (1988). Cyprinus carpio Red var. wuyuanensis (♀)×Cyprinus carpio yuanjiang (♂)-excellent hybrid common carp. China Fisheries, 43.Google Scholar
  135. Zhang, Z.H., Chen, J., Li, L., Tao, M., Zhang, C., Qin, Q.B., Xiao, J., Liu, Y., and Liu, S.J. (2014). Research advances in animal distant hybridization. Sci China Life Sci 57, 889–902.Google Scholar
  136. Zhao, Y., Li, S., and Tang, S. (2009). Genetic variations among late selected strains and wild populations of blunt snout bream (Megalobrama amblycephala) by ISSR analysis. J Fisheries China 33, 893–900.Google Scholar
  137. Zhong, C., Song, Y., Wang, Y., Li, Y., Liao, L., Xie, S., Zhu, Z., and Hu, W. (2012). Growth hormone transgene effects on growth performance are inconsistent among offspring derived from different homozygous transgenic common carp (Cyprinus carpio L.). Aquaculture 356–357, 404–411.Google Scholar
  138. Zhong, C., Song, Y., Wang, Y., Zhang, T., Duan, M., Li, Y., Liao, L., Zhu, Z., and Hu, W. (2013). Increased food intake in growth hormonetransgenic common carp (Cyprinus carpio L.) may be mediated by upregulating Agouti-related protein (AgRP). Gen Comp Endocrinol 192, 81–88.Google Scholar
  139. Zhong, Z., Niu, P., Wang, M., Huang, G., Xu, S., Sun, Y., Xu, X., Hou, Y., Sun, X., Yan, Y., et al. (2016). Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci Rep 6, 22953.Google Scholar
  140. Zhou, L., Wang, Y., and Gui, J.F. (2000). Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio Bloch) as revealed by RAPD assays. J Mol Evol 51, 498–506.Google Scholar
  141. Zhou, L., Xu, D., and Hou, Y. (2008). New species of fresh water fish-gold crucian carp. Sci Breed, 50.Google Scholar
  142. Zhou, Y., Ren, L., Xiao, J., Zhong, H., Wang, J., Hu, J., Yu, F., Tao, M., Zhang, C., Liu, Y., et al. (2015). Global transcriptional and miRNA insights into bases of heterosis in hybridization of Cyprinidae. Sci Rep 5, 13847.Google Scholar
  143. Zhou, Y., Zhong, H., Liu, S., Yu, F., Hu, J., Zhang, C., Tao, M., and Liu, Y. (2014). Elevated expression of Piwi and piRNAs in ovaries of triploid crucian carp. Mol Cell Endocrinol 383, 1–9.Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shi Wang
    • 1
    • 2
  • Chenchen Tang
    • 1
    • 2
  • Min Tao
    • 1
    • 2
  • Qinbo Qin
    • 1
    • 2
  • Chun Zhang
    • 1
    • 2
  • Kaikun Luo
    • 1
    • 2
  • Rurong Zhao
    • 1
    • 2
  • Jing Wang
    • 1
    • 2
  • Li Ren
    • 1
    • 2
  • Jun Xiao
    • 1
    • 2
  • Fangzhou Hu
    • 1
    • 2
  • Rong Zhou
    • 1
    • 2
  • Wei Duan
    • 1
    • 2
  • Shaojun Liu
    • 1
    • 2
    Email author
  1. 1.State Laboratory of Developmental Biology of Freshwater FishHunan Normal UniversityChangshaChina
  2. 2.College of Life SciencesHunan Normal UniversityChangshaChina

Personalised recommendations