Advertisement

Science China Life Sciences

, Volume 62, Issue 3, pp 288–308 | Cite as

Trends in herbgenomics

  • Tianyi Xin
  • Yu Zhang
  • Xiangdong Pu
  • Ranran Gao
  • Zhichao XuEmail author
  • Jingyuan SongEmail author
Review

Abstract

From Shen Nong’s Herbal Classic (Shennong Bencao Jing) to the Compendium of Materia Medica (Bencao Gangmu) and the first scientific Nobel Prize for the mainland of China, each milestone in the historical process of the development of traditional Chinese medicine (TCM) involves screening, testing and integrating. After thousands of years of inheritance and development, herbgenomics (bencaogenomics) has bridged the gap between TCM and international advanced omics studies, promoting the application of frontier technologies in TCM. It is a discipline that uncovers the genetic information and regulatory networks of herbs to clarify their molecular mechanism in the prevention and treatment of human diseases. The main theoretical system includes genomics, functional genomics, proteomics, transcriptomics, metabolomics, epigenomics, metagenomics, synthetic biology, pharmacogenomics of TCM, and bioinformatics, among other fields. Herbgenomics is mainly applicable to the study of medicinal model plants, genomic-assisted breeding, herbal synthetic biology, protection and utilization of gene resources, TCM quality evaluation and control, and TCM drug development. Such studies will accelerate the application of cutting-edge technologies, revitalize herbal research, and strongly promote the development and modernization of TCM.

Keywords

herbgenomics (bencaogenomics) traditional Chinese medicine omics practical application 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81573398) and CAMS Innovation Fund for Medical Sciences (CIFMS, 2016-I2M-3-016).

Supplementary material

11427_2018_9352_MOESM1_ESM.pdf (104 kb)
Table S1 Several key enzymes involved in the biosynthetic pathway of specific active compounds

References

  1. Adem, M., Beyene, D., and Feyissa, T. (2017). Recent achievements obtained by chloroplast transformation. Plant Methods 13, 30.Google Scholar
  2. Alagoz, Y., Gurkok, T., Zhang, B., and Unver, T. (2016). Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci Rep 6, 30910.Google Scholar
  3. Awan, A.R., Shaw, W.M., and Ellis, T. (2016). Biosynthesis of therapeutic natural products using synthetic biology. Adv Drug Deliver Rev 105, 96–106.Google Scholar
  4. Arabidopsis Genome Initiative, (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.Google Scholar
  5. Bennetzen, J.L., Schmutz, J., Wang, H., Percifield, R., Hawkins, J., Pontaroli, A.C., Estep, M., Feng, L., Vaughn, J.N., Grimwood, J., et al. (2012). Reference genome sequence of the model plant Setaria. Nat Biotechnol 30, 555–561.Google Scholar
  6. Bolger, M.E., Arsova, B., and Usadel, B. (2018). Plant genome and transcriptome annotations: from misconceptions to simple solutions. Brief Bioinform 19, 437–449.Google Scholar
  7. Booth, L.N., and Brunet, A. (2016). The aging epigenome. Mol Cell 62, 728–744.Google Scholar
  8. Bryant, L., Flatley, B., Patole, C., Brown, G.D., and Cramer, R. (2015). Proteomic analysis of Artemisia annua—towards elucidating the biosynthetic pathways of the antimalarial pro-drug artemisinin. BMC Plant Biol 15, 175.Google Scholar
  9. Cao, H., Nuruzzaman, M., Xiu, H., Huang, J., Wu, K., Chen, X., Li, J., Wang, L., Jeong, J.H., Park, S.J., et al. (2015). Transcriptome analysis of methyl jasmonate-elicited Panax ginseng adventitious roots to discover putative ginsenoside biosynthesis and transport genes. Int J Mol Sci 16, 3035–3057.Google Scholar
  10. Chai, Y., Wang, G., Fan, L., and Zhao, M. (2016). A proteomic analysis of mushroom polysaccharide-treated HepG2 cells. Sci Rep 6, 23565.Google Scholar
  11. Chan, A.P., Crabtree, J., Zhao, Q., Lorenzi, H., Orvis, J., Puiu, D., Melake- Berhan, A., Jones, K.M., Redman, J., Chen, G., et al. (2010). Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28, 951–956.Google Scholar
  12. Chang, C.J., Lin, C.S., Lu, C.C., Martel, J., Ko, Y.F., Ojcius, D.M., Tseng, S.F., Wu, T.R., Chen, Y.Y.M., Young, J.D., et al. (2015). Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun 6, 7489.Google Scholar
  13. Chen, G., Shi, T., and Shi, L. (2017). Characterizing and annotating the genome using RNA-seq data. Sci China Life Sci 60, 116–125.Google Scholar
  14. Chen, S. (2017). I19 Major achievements of traditional medicine in treating epidemic and chronic diseases. Biochem Pharmacol 139, 110.Google Scholar
  15. Chen, S., Xu, J., Liu, C., Zhu, Y., Nelson, D.R., Zhou, S., Li, C., Wang, L., Guo, X., Sun, Y., et al. (2012). Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun 3, 913.Google Scholar
  16. Chen, S., Pang, X., Song, J., Shi, L., Yao, H., Han, J., and Leon, C. (2014). A renaissance in herbal medicine identification: from morphology to DNA. Biotech Adv 32, 1237–1244.Google Scholar
  17. Chen, S., Song, J., Sun, C., Xu, J., Zhu, Y., Verpoorte, R., and Fan, T. (2015). Herbal genomics: examining the biology of traditional medicines. Science 347, S27–S29.Google Scholar
  18. Chen, W., Kui, L., Zhang, G., Zhu, S., Zhang, J., Wang, X., Yang, M., Huang, H., Liu, Y., Wang, Y., et al. (2017). Whole-genome sequencing and analysis of the Chinese herbal plant Panax notoginseng. Mol Plant 10, 899–902.Google Scholar
  19. Chen, X., Xiang, L., Shi, L., Li, G., Yao, H., Han, J., Lin, Y., Song, J., and Chen, S. (2017). Identification of crude drugs in the Japanese pharmacopoeia using a DNA barcoding system. Sci Rep 7, 42325.Google Scholar
  20. Cherukupalli, N., Divate, M., Mittapelli, S.R., Khareedu, V.R., and Vudem, D.R. (2016). De novo assembly of leaf transcriptome in the medicinal plant Andrographis paniculata. Front Plant Sci 7, 1203.Google Scholar
  21. Chi, K.R. (2008). The year of sequencing. Nat Methods 5, 11–14.Google Scholar
  22. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.Google Scholar
  23. Cui, G., Duan, L., Jin, B., Qian, J., Xue, Z., Shen, G., Snyder, J.H., Song, J., Chen, S., Huang, L., et al. (2015). Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza. Plant Physiol 169, 1607–1618.Google Scholar
  24. Deng, N., Chang, E., Li, M., Ji, J., Yao, X., Bartish, I.V., Liu, J., Ma, J., Chen, L., Jiang, Z., et al. (2016). Transcriptome characterization of Gnetum parvifolium reveals candidate genes involved in important secondary metabolic pathways of flavonoids and stilbenoids. Front Plant Sci 7, 174.Google Scholar
  25. Di, P., Zhang, L., Chen, J., Tan, H., Xiao, Y., Dong, X., Zhou, X., and Chen, W. (2013). 13C tracer reveals phenolic acids biosynthesis in hairy root cultures of Salvia miltiorrhiza. ACS Chem Biol 8, 1537–1548.Google Scholar
  26. Diao, Y., Lin, X.M., Liao, C.L., Tang, C.Z., Chen, Z.J., and Hu, Z.L. (2009). Authentication of Panax ginseng from its adulterants by PCRRFLP and ARMS. Planta Med 75, 557–560.Google Scholar
  27. Dietrich, J.A., Yoshikuni, Y., Fisher, K.J., Woolard, F.X., Ockey, D., Mc- Phee, D.J., Renninger, N.S., Chang, M.C.Y., Baker, D., and Keasling, J. D. (2009). A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450BM3. ACS Chem Biol 4, 261–267.Google Scholar
  28. Dong, L., Xu, J., Feng, G., Li, X., and Chen, S. (2016). Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Sci Rep 6, 31802.Google Scholar
  29. Du, J., Liang, Z., Xu, J., Zhao, Y., Li, X., Zhang, Y., Zhao, D., Chen, R., Liu, Y., Joshi, T., et al. (2018). Plant-derived phosphocholine facilitates cellular uptake of anti-pulmonary fibrotic HJT-sRNA-m7. Sci China Life Sci 61, in press doi: 10.1007/s11427-017-9026-7.Google Scholar
  30. Fu, Y., Li, L., Hao, S., Guan, R., Fan, G., Shi, C., Wan, H., Chen, W., Zhang, H., Liu, G., et al. (2017). Draft genome sequence of the Tibetan medicinal herb Rhodiola crenulata. Gigascience 6, 1–5.Google Scholar
  31. Fuentes, P., Zhou, F., Erban, A., Karcher, D., Kopka, J., and Bock, R. (2016). A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. Elife 5, pii: e13664.Google Scholar
  32. Galla, G., Vogel, H., Sharbel, T.F., and Barcaccia, G. (2015). De novo sequencing of the Hypericum perforatum L. flower transcriptome to identify potential genes that are related to plant reproduction sensu lato. BMC Genomics 16, 254.Google Scholar
  33. Gao, Z., Liu, Y., Wang, X., Song, J., Chen, S., Ragupathy, S., Han, J., and Newmaster, S.G. (2017). Derivative technology of DNA barcoding (- nucleotide signature and SNP double peak methods) detects adulterants and substitution in Chinese patent medicines. Sci Rep 7, 5858.Google Scholar
  34. Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., González, V.M., Hénaff, E., Câmara, F., Cozzuto, L., Lowy, E., et al. (2012). The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109, 11872–11877.Google Scholar
  35. Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.Y., Algire, M.A., Benders, G.A., Montague, M.G., Ma, L., Moodie, M.M., et al. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56.Google Scholar
  36. Giri, L., Jugran, A.K., Bahukhandi, A., Dhyani, P., Bhatt, I.D., Rawal, R.S., Nandi, S.K., and Dhar, U. (2017). Population genetic structure and marker trait associations using morphological, phytochemical and molecular parameters in Habenaria edgeworthii—a threatened medicinal orchid of West Himalaya, India. Appl Biochem Biotechnol 181, 267–282.Google Scholar
  37. Graham, I.A., Besser, K., Blumer, S., Branigan, C.A., Czechowski, T., Elias, L., Guterman, I., Harvey, D., Isaac, P.G., Khan, A.M., et al. (2010). The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 327, 328–331.Google Scholar
  38. Gualberto, J.M., Mileshina, D., Wallet, C., Niazi, A.K., Weber-Lotfi, F., and Dietrich, A. (2014). The plant mitochondrial genome: dynamics and maintenance. Biochimie 100, 107–120.Google Scholar
  39. Guan, R., Zhao, Y., Zhang, H., Fan, G., Liu, X., Zhou, W., Shi, C., Wang, J., Liu, W., Liang, X., et al. (2016). Draft genome of the living fossil Ginkgo biloba. Gigascience 5, 49.Google Scholar
  40. Guo, D., Xue, Y., Li, D., He, B., Jia, X., Dong, X., and Guo, M. (2017). Overexpression of CtCHS1 increases accumulation of quinochalcone in safflower. Front Plant Sci 8, 1409.Google Scholar
  41. Guo, H., Liu, J., Luo, L., Wei, X., Zhang, J., Qi, Y., Zhang, B., Liu, H., and Xiao, P. (2017). Complete chloroplast genome sequences of Schisandra chinensis: genome structure, comparative analysis, and phylogenetic relationship of basal angiosperms. Sci China Life Sci 60, 1286–1290.Google Scholar
  42. Guo, J., Ma, X., Cai, Y., Ma, Y., Zhan, Z., Zhou, Y.J., Liu, W., Guan, M., Yang, J., Cui, G., et al. (2016). Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones. New Phytol 210, 525–534.Google Scholar
  43. Guo, J., Zhou, Y.J., Hillwig, M.L., Shen, Y., Yang, L., Wang, Y., Zhang, X., Liu, W., Peters, R.J., Chen, X., et al. (2013). CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc Natl Acad Sci USA 110, 12108–12113.Google Scholar
  44. Guo, S., Zhang, J., Sun, H., Salse, J., Lucas, W.J., Zhang, H., Zheng, Y., Mao, L., Ren, Y., Wang, Z., et al. (2013). The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45, 51–58.Google Scholar
  45. Haiser, H.J., and Turnbaugh, P.J. (2012). Is it time for a metagenomic basis of therapeutics? Science 336, 1253–1255.Google Scholar
  46. Han, J., Pang, X., Liao, B., Yao, H., Song, J., and Chen, S. (2016). An authenticity survey of herbal medicines from markets in China using DNA barcoding. Sci Rep 6, 18723.Google Scholar
  47. Han, R., Takahashi, H., Nakamura, M., Yoshimoto, N., Suzuki, H., Shibata, D., Yamazaki, M., and Saito, K. (2015a). Transcriptomic landscape of Pueraria lobata demonstrates potential for phytochemical study. Front Plant Sci 6, 426.Google Scholar
  48. Han, R., Takahashi, H., Nakamura, M., Bunsupa, S., Yoshimoto, N., Yamamoto, H., Suzuki, H., Shibata, D., Yamazaki, M., and Saito, K. (2015b). Transcriptome analysis of nine tissues to discover genes involved in the biosynthesis of active ingredients in Sophora flavescens. Biol Pharmaceut Bull 38, 876–883.Google Scholar
  49. Hansen, N.L., Heskes, A.M., Hamberger, B., Olsen, C.E., Hallström, B.M., Andersen-Ranberg, J., and Hamberger, B. (2017). The terpene synthase gene family in Tripterygium wilfordii harbors a labdane-type diterpene synthase among the monoterpene synthase TPS-b subfamily. Plant J 89, 429–441.Google Scholar
  50. Hao, X., Zhong, Y., Fu, X., Lv, Z., Shen, Q., Yan, T., Shi, P., Ma, Y., Chen, M., Lv, X., et al. (2017). Transcriptome analysis of genes associated with the artemisinin biosynthesis by jasmonic acid treatment under the light in Artemisia annua. Front Plant Sci 8, 971.Google Scholar
  51. He, N., Zhang, C., Qi, X., Zhao, S., Tao, Y., Yang, G., Lee, T.H., Wang, X., Cai, Q., Li, D., et al. (2013). Draft genome sequence of the mulberry tree Morus notabilis. Nat Commun 4, 2445.Google Scholar
  52. He, Y., Xiao, H., Deng, C., Xiong, L., Nie, H., and Peng, C. (2016). Survey of the genome of Pogostemon cablin provides insights into its evolutionary history and sesquiterpenoid biosynthesis. Sci Rep 6, 26405.Google Scholar
  53. Hoshino, A., Jayakumar, V., Nitasaka, E., Toyoda, A., Noguchi, H., Itoh, T., Shin-I, T., Minakuchi, Y., Koda, Y., Nagano, A.J., et al. (2016). Genome sequence and analysis of the Japanese morning glory Ipomoea nil. Nat Commun 7, 13295.Google Scholar
  54. Hu, Z., Zhang, T., Gao, X.X., Wang, Y., Zhang, Q., Zhou, H.J., Zhao, G.F., Wang, M.L., Woeste, K.E., and Zhao, P. (2016). De novo assembly and characterization of the leaf, bud, and fruit transcriptome from the vulnerable tree Juglans mandshurica for the development of 20 new microsatellite markers using Illumina sequencing. Mol Genet Genomics 291, 849–862.Google Scholar
  55. Huang, X., Zhou, G., Wu, W., Duan, Y., Ma, G., Song, J., Xiao, R., Vandenberghe, L., Zhang, F., D’Amore, P.A., et al. (2017). Genome editing abrogates angiogenesis in vivo. Nat Commun 8, 112.Google Scholar
  56. Hunt, M., Kikuchi, T., Sanders, M., Newbold, C., Berriman, M., and Otto, T.D. (2013). REAPR: a universal tool for genome assembly evaluation. Genome Biol 14, R47.Google Scholar
  57. Jayakodi, M., Choi, B.S., Lee, S.C., Kim, N.H., Park, J.Y., Jang, W., Lakshmanan, M., Mohan, S.V.G., Lee, D.Y., and Yang, T.J. (2018). Ginseng Genome Database: an open-access platform for genomics of Panax ginseng. BMC Plant Biol 18, 62.Google Scholar
  58. Jayakodi, M., Lee, S.C., Lee, Y.S., Park, H.S., Kim, N.H., Jang, W., Lee, H. O., Joh, H.J., and Yang, T.J. (2015). Comprehensive analysis of Panax ginseng root transcriptomes. BMC Plant Biol 15, 138.Google Scholar
  59. Ji, A., Jia, J., Xu, Z., Li, Y., Bi, W., Ren, F., He, C., Liu, J., Hu, K., and Song, J. (2017). Transcriptome-guided mining of genes involved in crocin biosynthesis. Front Plant Sci 8, 518.Google Scholar
  60. Jia, J., Xu, Z., Xin, T., Shi, L., and Song, J. (2017). Quality control of the traditional patent medicine Yimu Wan based on SMRT sequencing and DNA barcoding. Front Plant Sci 8, 926.Google Scholar
  61. Kellner, F., Kim, J., Clavijo, B.J., Hamilton, J.P., Childs, K.L., Vaillancourt, B., Cepela, J., Habermann, M., Steuernagel, B., Clissold, L., et al. (2015). Genome-guided investigation of plant natural product biosynthesis. Plant J 82, 680–692.Google Scholar
  62. Kim, B.Y., Park, H.S., Kim, S., and Kim, Y.D. (2017a). Development of microsatellite markers for Viscum coloratum (Santalaceae) and their application to wild populations. Appl Plant Sci 5, pii: apps.1600102.Google Scholar
  63. Kim, B.Y., Park, H.S., Lee, J.H., Kwak, M., and Kim, Y.D. (2017b). Development of microsatellite markers based on expressed sequence tags in Asparagus cochinchinensis (Asparagaceae). Appl Plant Sci 5, pii: apps. 1700021.Google Scholar
  64. Kim, Y., Kim, A.Y., Jo, A., Choi, H., Cho, S.S., and Choi, C. (2017). Development of user-friendly method to distinguish subspecies of the Korean medicinal herb Perilla frutescens using multiplex-PCR. Molecules 22, 665.Google Scholar
  65. Kitashiba, H., Li, F., Hirakawa, H., Kawanabe, T., Zou, Z., Hasegawa, Y., Tonosaki, K., Shirasawa, S., Fukushima, A., Yokoi, S., et al. (2014). Draft sequences of the radish (Raphanus sativus L.) genome. DNA Res 21, 481–490.Google Scholar
  66. Kui, L., Chen, H., Zhang, W., He, S., Xiong, Z., Zhang, Y., Yan, L., Zhong, C., He, F., Chen, J., et al. (2016). Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale. Front Plant Sci 7, 2036.Google Scholar
  67. Lee, Y.S., Park, H.S., Lee, D.K., Jayakodi, M., Kim, N.H., Koo, H.J., Lee, S.C., Kim, Y.J., Kwon, S.W., and Yang, T.J. (2017). Integrated transcriptomic and metabolomic analysis of five Panax ginseng cultivars reveals the dynamics of ginsenoside biosynthesis. Front Plant Sci 8, 1048.Google Scholar
  68. Li, B., Cui, G., Shen, G., Zhan, Z., Huang, L., Chen, J., and Qi, X. (2017). Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Sci Rep 7, 43320.Google Scholar
  69. Li, C., Zhu, Y., Guo, X., Sun, C., Luo, H., Song, J., Li, Y., Wang, L., Qian, J., and Chen, S. (2013). Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics 14, 245.Google Scholar
  70. Li, J., Zhang, J., Chen, H., Chen, X., Lan, J., and Liu, C. (2013). Complete mitochondrial genome of the medicinal mushroom Ganoderma lucidum. PLoS ONE 8, e72038.Google Scholar
  71. Li, J., Zhao, P., Yang, L., Li, Y., Tian, Y., and Li, S. (2016a). System biology analysis of long-term effect and mechanism of Bufei Yishen on COPD revealed by system pharmacology and 3-omics profiling. Sci Rep 6, 25492.Google Scholar
  72. Li, J., Xiong, C., Liu, Y., Liang, J., and Zhou, X. (2016b). Loop-mediated isothermal amplification (LAMP): emergence as an alternative technology for herbal medicine identification. Front Plant Sci 7, 1956.Google Scholar
  73. Li, M., Yang, Y., Feng, F., Zhang, B., Chen, S., Yang, C., Gu, L., Wang, F., Zhang, J., Chen, A., et al. (2017). Differential proteomic analysis of replanted Rehmannia glutinosa roots by iTRAQ reveals molecular mechanisms for formation of replant disease. BMC Plant Biol 17, 116.Google Scholar
  74. Li, M., Shi, F., Zhou, Y., Li, Y., Wang, X., Zhang, C., Wang, X., Liu, B., Xiao, H., and Li, L. (2015). Genetic and epigenetic diversities shed light on domestication of cultivated ginseng (Panax ginseng). Mol Plant 8, 1612–1622.Google Scholar
  75. Li, Q., Li, Y., Song, J., Xu, H., Xu, J., Zhu, Y., Li, X., Gao, H., Dong, L., Qian, J., et al. (2014). High-accuracy de novo assembly and SNP detection of chloroplast genomes using a SMRT circular consensus sequencing strategy. New Phytol 204, 1041–1049.Google Scholar
  76. Li, Y., Ba, H., and Yang, F. (2016). Complete mitochondrial genome of Cervus elaphus songaricus (Cetartiodactyla: Cervinae) and a phylogenetic analysis with related species. Mitochondrial DNA 27, 620–621.Google Scholar
  77. Li, Y., Hu, X.D., Yang, R.H., Hsiang, T., Wang, K., Liang, D.Q., Liang, F., Cao, D.M., Zhou, F., Wen, G., et al. (2015a). Complete mitochondrial genome of the medicinal fungus Ophiocordyceps sinensis. Sci Rep 5, 13892.Google Scholar
  78. Li, Y., Wang, X., Chen, T., Yao, F., Li, C., Tang, Q., Sun, M., Sun, G., Hu, S., Yu, J., and Song, S. (2015b). RNA-Seq based de novo transcriptome assembly and gene discovery of Cistanche deserticola fleshy stem. PLoS ONE 10, e125722.Google Scholar
  79. Liu, F., Guo, Q.S., Shi, H.Z., Cheng, B.X., Lu, Y.X., Gou, L., Wang, J., Shen, W.B., Yan, S.M., and Wu, M.J. (2016). Genetic variation in Whitmania pigra, Hirudo nipponica and Poecilobdella manillensis, three endemic and endangered species in China using SSR and TRAP markers. Gene 579, 172–182.Google Scholar
  80. Liu, M.H., Yang, B.R., Cheung, W.F., Yang, K.Y., Zhou, H.F., Kwok, J.S. L., Liu, G.C., Li, X.F., Zhong, S., Lee, S.M.Y., et al. (2015). Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis. BMC Genomics 16, 265.Google Scholar
  81. Liu, M.J., Zhao, J., Cai, Q.L., Liu, G.C., Wang, J.R., Zhao, Z.H., Liu, P., Dai, L., Yan, G., Wang, W.J., et al. (2014). The complex jujube genome provides insights into fruit tree biology. Nat Commun 5, 5315.Google Scholar
  82. Liu, S., Chen, J., Li, S.C., Zeng, X., Meng, Z., and Guo, S. (2015). Comparative transcriptome analysis of genes involved in GA-GID1-DELLA regulatory module in symbiotic and asymbiotic seed germination of Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae). Int J Mol Sci 16, 30190–30203.Google Scholar
  83. Liu, X., Cheng, J., Zhang, G., Ding, W., Duan, L., Yang, J., Kui, L., Cheng, X., Ruan, J., Fan, W., et al. (2018). Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches. Nat Commun 9, 448.Google Scholar
  84. Liu, X., Liu, Y., Huang, P., Ma, Y., Qing, Z., Tang, Q., Cao, H., Cheng, P., Zheng, Y., Yuan, Z., et al. (2017). The genome of medicinal plant Macleaya cordata provides new insights into benzylisoquinoline alkaloids metabolism. Mol Plant 10, 975–989.Google Scholar
  85. Liu, Y., Liu, X., and Zhang, M. (2016). The complete mitochondrial genome of Sika deer Cervus nippon hortulorum (Artiodactyla: Cervidae) and phylogenetic studies. Mitochondrial DNA A DNA Mapp Seq Anal 27, 2967–2968.Google Scholar
  86. Lu, X., Zhang, L., Zhang, F., Jiang, W., Shen, Q., Zhang, L., Lv, Z., Wang, G., and Tang, K. (2013). AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol 198, 1191–1202.Google Scholar
  87. Luo, H., Sun, C., Sun, Y., Wu, Q., Li, Y., Song, J., Niu, Y., Cheng, X., Xu, H., Li, C., et al. (2011). Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics 12, S5.Google Scholar
  88. Ma, C., Gao, Z., Zhang, J., Zhang, W., Shao, J., Hai, M., Chen, J., Yang, S., and Zhang, G. (2016). Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis. Front Plant Sci 7, 673.Google Scholar
  89. Ma, Y.S., Yu, H., Li, Y.Y., Yan, H., and Cheng, X. (2008). A study of genetic structure of Stephania yunnanensis (Menispermaceae) by DALP. Biochem Genet 46, 227–240.Google Scholar
  90. Martel, J., Ojcius, D.M., Chang, C.J., Lin, C.S., Lu, C.C., Ko, Y.F., Tseng, S.F., Lai, H.C., and Young, J.D. (2017). Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nat Rev Endocrinol 13, 149–160.Google Scholar
  91. Martin, V.J.J., Pitera, D.J., Withers, S.T., Newman, J.D., and Keasling, J.D. (2003). Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21, 796–802.Google Scholar
  92. Mayer, K.F.X., Waugh, R., Brown, J.W.S., Schulman, A., Langridge, P., Platzer, M., Fincher, G.B., Muehlbauer, G.J., Sato, K., et al. (2012). A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711–716.Google Scholar
  93. Mayr, C. (2016). Evolution and biological roles of alternative 3′UTRs. Trends Cell Biol 26, 227–237.Google Scholar
  94. Mehta, S.R., Eikelboom, J.W., Rupprecht, H.J., Lewis, B.S., Natarajan, M. K., Yi, C., Pogue, J., and Yusuf, S. (2002). Efficacy of hirudin in reducing cardiovascular events in patients with acute coronary syndrome undergoing early percutaneous coronary intervention. Eur Heart J 23, 117–123.Google Scholar
  95. Miao, Y., Zhu, Z., Guo, Q., Zhu, Y., Yang, X., and Sun, Y. (2016). Transcriptome analysis of differentially expressed genes provides insight into stolon formation in Tulipa edulis. Front Plant Sci 7, 409.Google Scholar
  96. Miettinen, K., Dong, L., Navrot, N., Schneider, T., Burlat, V., Pollier, J., Woittiez, L., van der Krol, S., Lugan, R., Ilc, T., et al. (2014). The secoiridoid pathway from Catharanthus roseus. Nat Commun 5, 3606.Google Scholar
  97. Ming, R., VanBuren, R., Liu, Y., Yang, M., Han, Y., Li, L.T., Zhang, Q., Kim, M.J., Schatz, M.C., Campbell, M., et al. (2013). Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol 14, R41.Google Scholar
  98. Mochida, K., Sakurai, T., Seki, H., Yoshida, T., Takahagi, K., Sawai, S., Uchiyama, H., Muranaka, T., and Saito, K. (2017). Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. Plant J 89, 181–194.Google Scholar
  99. Montenegro, D., Kalpana, K., Chrissian, C., Sharma, A., Takaoka, A., Iacovidou, M., Soll, C.E., Aminova, O., Heguy, A., Cohen, L., et al. (2015). Uncovering potential ‘herbal probiotics’ in Juzen-taiho-to through the study of associated bacterial populations. Bioorg Med Chem Lett 25, 466–469.Google Scholar
  100. Nguyen, H.T., Min, J.E., Long, N.P., Thanh, M.C., Le, T.H.V., Lee, J., Park, J.H., and Kwon, S.W. (2017). Multi-platform metabolomics and a genetic approach support the authentication of agarwood produced by Aquilaria crassna and Aquilaria malaccensis. J Pharmaceut Biomed Anal 142, 136–144.Google Scholar
  101. Nguyen, K.N.T., Nguyen, G.K.T., Nguyen, P.Q.T., Ang, K.H., Dedon, P.C., and Tam, J.P. (2016). Immunostimulating and Gram-negative-specific antibacterial cyclotides from the butterfly pea (Clitoria ternatea). FEBS J 283, 2067–2090.Google Scholar
  102. Nicholson, J.K., Lindon, J.C., and Holmes, E. (1999). “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29, 1181–1189.Google Scholar
  103. Oliveira, T.G., Pereira, A.M., Coppede, J.S., Franca, S.C., Ming, L.C., and Bertoni, B.W. (2016). Genetic diversity analysis of Croton antisyphiliticus Mart. using AFLP molecular markers. Genet Mol Res 15, doi: 10.4238/gmr.15017461.Google Scholar
  104. Otto, L.G., Mondal, P., Brassac, J., Preiss, S., Degenhardt, J., He, S., Reif, J.C., and Sharbel, T.F. (2017). Use of genotyping-by-sequencing to determine the genetic structure in the medicinal plant chamomile, and to identify flowering time and alpha-bisabolol associated SNP-loci by genome- wide association mapping. BMC Genomics 18, 599.Google Scholar
  105. Paddon, C.J., Westfall, P.J., Pitera, D.J., Benjamin, K., Fisher, K., McPhee, D., Leavell, M.D., Tai, A., Main, A., Eng, D., et al. (2013). High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532.Google Scholar
  106. Paddon, C.J., and Keasling, J.D. (2014). Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Micro 12, 355–367.Google Scholar
  107. Pan, T.L., Wang, P.W., Hung, Y.C., Huang, C.H., and Rau, K.M. (2013). Proteomic analysis reveals tanshinone IIA enhances apoptosis of advanced cervix carcinoma CaSki cells through mitochondria intrinsic and endoplasmic reticulum stress pathways. Proteomics 13, 3411–3423.Google Scholar
  108. Park, S., Ruhlman, T.A., Sabir, J.S.M., Mutwakil, M.H.Z., Baeshen, M.N., Sabir, M.J., Baeshen, N.A., and Jansen, R.K. (2014). Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids. BMC Genomics 15, 405.Google Scholar
  109. Qin, G., Xu, C., Ming, R., Tang, H., Guyot, R., Kramer, E.M., Hu, Y., Yi, X., Qi, Y., Xu, X., et al. (2017). The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis. Plant J 91, 1108–1128.Google Scholar
  110. Rai, A., Kamochi, H., Suzuki, H., Nakamura, M., Takahashi, H., Hatada, T., Saito, K., and Yamazaki, M. (2017). De novo transcriptome assembly and characterization of nine tissues of Lonicera japonica to identify potential candidate genes involved in chlorogenic acid, luteolosides, and secoiridoid biosynthesis pathways. J Nat Med 71, 1–15.Google Scholar
  111. Rai, A., Nakamura, M., Takahashi, H., Suzuki, H., Saito, K., and Yamazaki, M. (2016). High-throughput sequencing and de novo transcriptome assembly of Swertia japonica to identify genes involved in the biosynthesis of therapeutic metabolites. Plant Cell Rep 35, 2091–2111.Google Scholar
  112. Raymond, O., Gouzy, J., Just, J., Badouin, H., Verdenaud, M., Lemainque, A., Vergne, P., Moja, S., Choisne, N., Pont, C., et al. (2018). The Rosa genome provides new insights into the domestication of modern roses. Nat Genet 50, 772–777.Google Scholar
  113. Saki, S., Bagheri, H., Deljou, A., and Zeinalabedini, M. (2016). Evaluation of genetic diversity amongst Descurainia sophia L. genotypes by intersimple sequence repeat (ISSR) marker. Physiol Mol Biol Plants 22, 97–105.Google Scholar
  114. Salzberg, S.L., Phillippy, A.M., Zimin, A., Puiu, D., Magoc, T., Koren, S., Treangen, T.J., Schatz, M.C., Delcher, A.L., Roberts, M., et al. (2012). GAGE: a critical evaluation of genome assemblies and assembly algorithms. Genome Res 22, 557–567.Google Scholar
  115. Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., et al. (2010). Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183.Google Scholar
  116. Schuster, S.C. (2008). Next-generation sequencing transforms today’s biology. Nat Methods 5, 16–18.Google Scholar
  117. Shan, Q., Wang, Y., Li, J., and Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9, 2395–2410.Google Scholar
  118. Shen, L., Hua, Y., Fu, Y., Li, J., Liu, Q., Jiao, X., Xin, G., Wang, J., Wang, X., Yan, C., et al. (2017). Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci China Life Sci 60, 506–515.Google Scholar
  119. Shen, Q., Zhang, L., Liao, Z., Wang, S., Yan, T., Shi, P., Liu, M., Fu, X., Pan, Q., Wang, Y., et al. (2018). The genome of Artemisia annua provides insight into the evolution of asteraceae family and artemisinin biosynthesis. Mol Plant 11, 776–788.Google Scholar
  120. Simakov, O., Marletaz, F., Cho, S.J., Edsinger-Gonzales, E., Havlak, P., Hellsten, U., Kuo, D.H., Larsson, T., Lv, J., Arendt, D., et al. (2013). Insights into bilaterian evolution from three spiralian genomes. Nature 493, 526–531.Google Scholar
  121. Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212.Google Scholar
  122. Song, J., Luo, H., Li, C., Sun, C., Xu, J., and Chen, S. (2013). Salvia miltiorrhiza as medicinal model plant. Acta Pharmaceut Sin 48, 1099–1106.Google Scholar
  123. State Pharmacopoeia Committee. (2015). Pharmacopoeia of the People’s Republic of China Part IV. 383–385.Google Scholar
  124. Sun, C., Hu, Y.L., Xu, J., Luo, H.M., Li, C.F., Song, J.Y., Guo, H.W., and Chen, S.L. (2013). Ganoderma lucidum: an emerging medicinal model fungus for study of the biosynthesis of natural medicines (in Chinese). Sci Sin Vitae 43, 447–457.Google Scholar
  125. Sun, H., Liu, F., Sun, L., Liu, J., Wang, M., Chen, X., Xu, X., Ma, R., Feng, K., and Jiang, R. (2016). Proteomic analysis of amino acid metabolism differences between wild and cultivated Panax ginseng. J Ginseng Res 40, 113–120.Google Scholar
  126. Sun, J., Manmathan, H., Sun, C., and Peebles, C.A.M. (2016). Examining the transcriptional response of overexpressing anthranilate synthase in the hairy roots of an important medicinal plant Catharanthus roseus by RNA-seq. BMC Plant Biol 16, 108.Google Scholar
  127. Sun, W., Li, J.J., Xiong, C., Zhao, B., and Chen, S.L. (2016). The potential power of bar-HRM technology in herbal medicine identification. Front Plant Sci 7, 367.Google Scholar
  128. Sun, W., Wang, B., Yang, J., Wang, W., Liu, A., Leng, L., Xiang, L., Song, C., and Chen, S. (2017). Weighted gene co-expression network analysis of the dioscin rich medicinal plant Dioscorea nipponica. Front Plant Sci 8, 789.Google Scholar
  129. Tamura, K., Teranishi, Y., Ueda, S., Suzuki, H., Kawano, N., Yoshimatsu, K., Saito, K., Kawahara, N., Muranaka, T., and Seki, H. (2017). Cytochrome P450 monooxygenase CYP716A141 is a unique β-amyrin C-16β oxidase involved in triterpenoid saponin biosynthesis in Platycodon grandiflorus. Plant Cell Physiol 58, 874–884.Google Scholar
  130. The British Pharmacopoeia Commission. (2015). British Pharmacopoeia Appendix XI V. Deoxyribonucleic Acid (DNA) Based Identification Techniques for Herbal Drugs.Google Scholar
  131. Tian, Z., Zhang, F., Liu, H., Gao, Q., and Chen, S. (2016). Development of SSR markers for a Tibetan medicinal plant, Lancea tibetica (Phrymaceae), based on RAD sequencing. Appl Plant Sci 4, pii: apps. 1600076.Google Scholar
  132. Tomasello, S., and Heubl, G. (2017). Phylogenetic analysis and molecular characterization of Xanthium sibiricum using DNA barcoding, PCRRFLP, and specific primers. Planta Med 83, 946–953.Google Scholar
  133. Tripathi, N., Saini, N., Nair, P., and Tiwari, S. (2012). Lack of genetic diversity of a critically endangered important medicinal plant Chlorophytum borivilianum in Central India revealed by AFLP markers. Physiol Mol Biol Plants 18, 161–167.Google Scholar
  134. Tu, Y. (2011). The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 17, 1217–1220.Google Scholar
  135. Urasaki, N., Takagi, H., Natsume, S., Uemura, A., Taniai, N., Miyagi, N., Fukushima, M., Suzuki, S., Tarora, K., Tamaki, M., et al. (2017). Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions. DNA Res 24, 51–58.Google Scholar
  136. van Bakel, H., Stout, J.M., Cote, A.G., Tallon, C.M., Sharpe, A.G., Hughes, T.R., and Page, J.E. (2011). The draft genome and transcriptome of Cannabis sativa. Genome Biol 12, R102.Google Scholar
  137. Vashisht, I., Mishra, P., Pal, T., Chanumolu, S., Singh, T.R., and Chauhan, R.S. (2015). Mining NGS transcriptomes for miRNAs and dissecting their role in regulating growth, development, and secondary metabolites production in different organs of a medicinal herb, Picrorhiza kurroa. Planta 241, 1255–1268.Google Scholar
  138. Verde, I., Abbott, A.G., Scalabrin, S., Jung, S., Shu, S., Marroni, F., Zhebentyayeva, T., Dettori, M.T., Grimwood, J., Cattonaro, F., et al. (2013). The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45, 487–494.Google Scholar
  139. Vining, K.J., Johnson, S.R., Ahkami, A., Lange, I., Parrish, A.N., Trapp, S. C., Croteau, R.B., Straub, S.C.K., Pandelova, I., and Lange, B.M. (2017). Draft genome sequence of Mentha longifolia and development of resources for mint cultivar improvement. Mol Plant 10, 323–339.Google Scholar
  140. Wang, J., Li, J., Li, J., Liu, S., Wu, X., Li, J., and Gao, W. (2016a). Transcriptome profiling shows gene regulation patterns in ginsenoside pathway in response to methyl jasmonate in Panax quinquefolium adventitious root. Sci Rep 6, 37263.Google Scholar
  141. Wang, L., Xiao, A.H., Ma, L.Y., Chen, F.J., Sang, Z.Y., and Duan, J. (2017). Identification of Magnolia wufengensis (Magnoliaceae) cultivars using phenotypic traits, SSR and SRAP markers: insights into breeding and conservation. Genet Mol Res in press doi: 10.4238/gmr16019473.Google Scholar
  142. Wang, L., Yu, S., Tong, C., Zhao, Y., Liu, Y., Song, C., Zhang, Y., Zhang, X., Wang, Y., Hua, W., et al. (2014). Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15, R39.Google Scholar
  143. Wang, Y., Dong, C., Xue, Z., Jin, Q., and Xu, Y. (2016b). De novo transcriptome sequencing and discovery of genes related to copper tolerance in Paeonia ostii. Gene 576, 126–135.Google Scholar
  144. Wang, Y., Fan, G., Liu, Y., Sun, F., Shi, C., Liu, X., Peng, J., Chen, W., Huang, X., Cheng, S., et al. (2013). The sacred lotus genome provides insights into the evolution of flowering plants. Plant J 76, 557–567.Google Scholar
  145. Wang, Z., Hobson, N., Galindo, L., Zhu, S., Shi, D., McDill, J., Yang, L., Hawkins, S., Neutelings, G., Datla, R., et al. (2012). The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72, 461–473.Google Scholar
  146. Westfall, P.J., Pitera, D.J., Lenihan, J.R., Eng, D., Woolard, F.X., Regentin, R., Horning, T., Tsuruta, H., Melis, D.J., Owens, A., et al. (2012). Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA 109, E111–E118.Google Scholar
  147. Winzer, T., Gazda, V., He, Z., Kaminski, F., Kern, M., Larson, T.R., Li, Y., Meade, F., Teodor, R., Vaistij, F.E., et al. (2012). A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 336, 1704–1708.Google Scholar
  148. Wu, K., Liu, H., Yang, M., Tao, Y., Ma, H., Wu, W., Zuo, Y., and Zhao, Y. (2014). High-density genetic map construction and QTLs analysis of grain yield-related traits in sesame (Sesamum indicum L.) based on RAD-Seq techonology. BMC Plant Biol 14, 274.Google Scholar
  149. Wu, L., Wang, B., Zhao, M., Liu, W., Zhang, P., Shi, Y., Xiong, C., Wang, P., Sun, W., and Chen, S. (2016). Rapid identification of Officinal Akebiae Caulis and its toxic adulterant Aristolochiae Manshuriensis Caulis (Aristolochia manshuriensis) by loop-mediated isothermal amplification. Front Plant Sci 7, 887.Google Scholar
  150. Wu, M., Wu, Y., Deng, B., Li, J., Cao, H., Qu, Y., Qian, X., and Zhong, G. (2016). Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget 7, 85318–85331.Google Scholar
  151. Wu, M.C., Lu, T.H., and Lu, K.H. (2017). PCR-RFLP of mitochondrial DNA reveals two origins of Apis mellifera in Taiwan. Saudi J Biol Sci 24, 1069–1074.Google Scholar
  152. Xia, E.H., Zhang, H.B., Sheng, J., Li, K., Zhang, Q.J., Kim, C., Zhang, Y., Liu, Y., Zhu, T., Li, W., et al. (2017). The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol Plant 10, 866–877.Google Scholar
  153. Xin, T., Su, C., Lin, Y., Wang, S., Xu, Z., and Song, J. (2018b). Precise species detection of traditional Chinese patent medicine by shotgun metagenomic sequencing. Phytomedicine 47, 40–47.Google Scholar
  154. Xin, T., Xu, Z., Jia, J., Leon, C., Hu, S., Lin, Y., Ragupathy, S., Song, J., and Newmaster, S.G. (2018a). Biomonitoring for traditional herbal medicinal products using DNA metabarcoding and single molecule, realtime sequencing. Acta Pharmaceut Sin B 8, 488–497.Google Scholar
  155. Xin, T., Yao, H., Gao, H., Zhou, X., Ma, X., Xu, C., Chen, J., Han, J., Pang, X., Xu, R., et al. (2013). Super food Lycium barbarum (Solanaceae) traceability via an internal transcribed spacer 2 barcode. Food Res Int 54, 1699–1704.Google Scholar
  156. Xing, P., Liu, T., Song, Z., and Li, X. (2016). Genetic diversity of Toona sinensis Roem in China revealed by ISSR and SRAP markers. Genet Mol Res 15, 15038387.Google Scholar
  157. Xu, H., Song, J., Luo, H., Zhang, Y., Li, Q., Zhu, Y., Xu, J., Li, Y., Song, C., Wang, B., et al. (2016). Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol Plant 9, 949–952.Google Scholar
  158. Xu, J., Chu, Y., Liao, B., Xiao, S., Yin, Q., Bai, R., Su, H., Dong, L., Li, X., Qian, J., et al. (2017). Panax ginseng genome examination for ginsenoside biosynthesis. Gigascience 6, 1–15.Google Scholar
  159. Xu, J., Sun, C., Xu, Z.C., Ji, A.J., Hu, Y.L., Sun, W., Wang, L.Z., Wang, B., Yang, P., Zhang, X., et al. (2014). Research strategy for model medicinal species (in Chinese). Chin Sci Bull (Chin Ver) 59, 733–742.Google Scholar
  160. Xu, L., and Huang, H. (2014). Genetic and epigenetic controls of plant regeneration. Curr Top Dev Biol 108, 1–33.Google Scholar
  161. Xu, Y., Lu, Y., Xie, C., Gao, S., Wan, J., and Prasanna, B.M. (2012). Whole-genome strategies for marker-assisted plant breeding. Mol Breeding 29, 833–854.Google Scholar
  162. Xu, Z., Ji, A., Song, J., and Chen, S. (2016a). Genome-wide analysis of auxin response factor gene family members in medicinal model plant Salvia miltiorrhiza. Biol Open 5, 848–857.Google Scholar
  163. Xu, Z., Ji, A., Zhang, X., Song, J., and Chen, S. (2016b). Biosynthesis and regulation of active compounds in medicinal model plant Salvia miltiorrhiza. Chin Herbal Meds 8, 3–11.Google Scholar
  164. Xu, Z., Luo, H., Ji, A., Zhang, X., Song, J., and Chen, S. (2016c). Global identification of the full-length transcripts and alternative splicing related to phenolic acid biosynthetic genes in Salvia miltiorrhiza. Front Plant Sci 7, 100.Google Scholar
  165. Xu, Z., Peters, R.J., Weirather, J., Luo, H., Liao, B., Zhang, X., Zhu, Y., Ji, A., Zhang, B., Hu, S., et al. (2015). Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J 82, 951–961.Google Scholar
  166. Xu, Z., and Song, J. (2017). The 2-oxoglutarate-dependent dioxygenase superfamily participates in tanshinone production in Salvia miltiorrhiza. J Exp Bot 68, 2299–2308.Google Scholar
  167. Xu, Z., Xin, T., Bartels, D., Li, Y., Gu, W., Yao, H., Liu, S., Yu, H., Pu, X., Zhou, J., et al. (2018). Genome analysis of the ancient tracheophyte Selaginella tamariscina reveals evolutionary features relevant to the acquisition of desiccation tolerance. Mol Plant 11, 983–994.Google Scholar
  168. Yan, L., Wang, X., Liu, H., Tian, Y., Lian, J., Yang, R., Hao, S., Wang, X., Yang, S., Li, Q., et al. (2015). The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb. Mol Plant 8, 922–934.Google Scholar
  169. Yang, J., Zhang, G., Zhang, J., Liu, H., Chen, W., Wang, X., Li, Y., Dong, Y., and Yang, S. (2017). Hybrid de novo genome assembly of the Chinese herbal fleabane Erigeron breviscapus. Gigascience 6, 1–7.Google Scholar
  170. Yang, K., Tian, Z., Chen, C., Luo, L., Zhao, B., Wang, Z., Yu, L., Li, Y., Sun, Y., Li, W., et al. (2015). Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication. Proc Natl Acad Sci USA 112, 13213–13218.Google Scholar
  171. Yang, Y., Li, M., Li, X., Chen, X., Lin, W., and Zhang, Z. (2015). Transcriptome- wide identification of the genes responding to replanting disease in Rehmannia glutinosa L. roots. Mol Biol Rep 42, 881–892.Google Scholar
  172. Ye, N., Zhang, X., Miao, M., Fan, X., Zheng, Y., Xu, D., Wang, J., Zhou, L., Wang, D., Gao, Y., et al. (2015). Saccharina genomes provide novel insight into kelp biology. Nat Commun 6, 6986.Google Scholar
  173. Yu, Z.X., Li, J.X., Yang, C.Q., Hu, W.L., Wang, L.J., and Chen, X.Y. (2012). The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L.. Mol Plant 5, 353–365.Google Scholar
  174. Yuan, Y., Jin, X., Liu, J., Zhao, X., Zhou, J., Wang, X., Wang, D., Lai, C., Xu, W., Huang, J., et al. (2018). The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nat Commun 9, 1615.Google Scholar
  175. Zhan, C., Li, X., Zhao, Z., Yang, T., Wang, X., Luo, B., Zhang, Q., Hu, Y., and Hu, X. (2016). Comprehensive analysis of the triterpenoid saponins biosynthetic pathway in Anemone flaccida by transcriptome and proteome profiling. Front Plant Sci 7, 1094.Google Scholar
  176. Zhang, C., Mei, Z., Cheng, J., He, Y., Khan, M.A., Luo, P., Imani, S., and Fu, J. (2015). Development of SCAR markers based on improved RAPD amplification fragments and molecular cloning for authentication of herbal medicines Angelica sinensis, Angelica acutiloba and Levisticum officinale. Nat Prod Commun 10, 1743–1747.Google Scholar
  177. Zhang, D., Li, W., Xia, E.H., Zhang, Q.J., Liu, Y., Zhang, Y., Tong, Y., Zhao, Y., Niu, Y.C., Xu, J.H., et al. (2017). The medicinal herb Panax notoginseng genome provides insights into ginsenoside biosynthesis and genome evolution. Mol Plant 10, 903–907.Google Scholar
  178. Zhang, G., Fang, X., Guo, X., Li, L., Luo, R., Xu, F., Yang, P., Zhang, L., Wang, X., Qi, H., et al. (2012). The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490, 49–54.Google Scholar
  179. Zhang, G., Jiang, N., Song, W., Ma, C., Yang, S., and Chen, J. (2016). De novo sequencing and transcriptome analysis of Pinellia ternata identify the candidate genes involved in the biosynthesis of benzoic acid and ephedrine. Front Plant Sci 7, 1209.Google Scholar
  180. Zhang, H., Hedhili, S., Montiel, G., Zhang, Y., Chatel, G., Pré, M., Gantet, P., and Memelink, J. (2011). The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J 67, 61–71.Google Scholar
  181. Zhang, J., Li, X., Lu, F., Wang, S., An, Y., Su, X., Li, X., Ma, L., and Han, G. (2017b). De novo sequencing and transcriptome analysis reveal key genes regulating steroid metabolism in leaves, roots, adventitious roots and calli of Periploca sepium Bunge. Front Plant Sci 8, 594.Google Scholar
  182. Zhang, J., Tian, Y., Yan, L., Zhang, G., Wang, X., Zeng, Y., Zhang, J., Ma, X., Tan, Y., Long, N., et al. (2016). Genome of plant maca (Lepidium meyenii) illuminates genomic basis for high-altitude adaptation in the Central Andes. Mol Plant 9, 1066–1077.Google Scholar
  183. Zhang, J., Su, H., Zhang, L., Liao, B., Xiao, S., Dong, L., Hu, Z., Wang, P., Li, X., Huang, Z., et al. (2017a). Comprehensive characterization for ginsenosides biosynthesis in ginseng root by integration analysis of chemical and transcriptome. Molecules 22, 889.Google Scholar
  184. Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y., Li, J., Bian, Z., Liang, X., Cai, X., et al. (2012). Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22, 107–126.Google Scholar
  185. Zhang, L., Long, Y., Fu, C., Xiang, J., Gan, J., Wu, G., Jia, H., Yu, L., and Li, M. (2016). Different gene expression patterns between leaves and flowers in Lonicera japonica revealed by transcriptome analysis. Front Plant Sci 7, 637.Google Scholar
  186. Zhang, X., Luo, H., Xu, Z., Zhu, Y., Ji, A., Song, J., and Chen, S. (2015). Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza. Sci Rep 5, 11244.Google Scholar
  187. Zhang, Y., Xu, Z., Ji, A., Luo, H., and Song, J. (2018). Genomic survey of bZIP transcription factor genes related to tanshinone biosynthesis in Salvia miltiorrhiza. Acta Pharmaceut Sin B 8, 295–305.Google Scholar
  188. Zhang, Z., Fan, M., Hao, X., Qin, X., and Li, Z. (2016). Integrative drug efficacy assessment of Danggui and European Danggui using NMRbased metabolomics. J Pharmaceut Biomed Anal 120, 1–9.Google Scholar
  189. Zhao, D., Hamilton, J.P., Pham, G.M., Crisovan, E., Wiegert-Rininger, K., Vaillancourt, B., Dellapenna, D., and Buell, C.R. (2017). De novo genome assembly of Camptotheca acuminata, a natural source of the anticancer compound camptothecin. Gigascience 6, 1–7.Google Scholar
  190. Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y.Y., Wang, X., Fu, H., Xue, X., Lu, C., Ma, J., et al. (2018). Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156.Google Scholar
  191. Zheng, F., Wang, B., and Wang, Q. (2016). Complete mitochondrial genome of the Sepiella maindroni (Sepioidea: Sepiidae). Mitochondrial DNA A DNA Mapp Seq Anal 27, 3766–3767.Google Scholar
  192. Zheng, Y., Xu, S., Liu, J., Zhao, Y., and Liu, J. (2017). Genetic diversity and population structure of Chinese natural bermudagrass (Cynodon dactylon (L.) Pers.) germplasm based on SRAP markers. PLoS ONE 12, e177508.Google Scholar
  193. Zhou, S.S., Xu, J., Zhu, H., Wu, J., Xu, J.D., Yan, R., Li, X.Y., Liu, H.H., Duan, S.M., Wang, Z., et al. (2016). Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction. Sci Rep 6, 22474.Google Scholar
  194. Zhou, W., Huang, Q., Wu, X., Zhou, Z., Ding, M., Shi, M., Huang, F., Li, S., Wang, Y., and Kai, G. (2017). Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci Rep 7, 10554.Google Scholar
  195. Zhou, Z., Li, X., Liu, J., Dong, L., Chen, Q., Liu, J., Kong, H., Zhang, Q., Qi, X., Hou, D., et al. (2015). Honeysuckle-encoded atypical micro- RNA2911 directly targets influenza A viruses. Cell Res 25, 39–49.Google Scholar
  196. Zhou, Z., Tan, H., Li, Q., Chen, J., Gao, S., Wang, Y., Chen, W., and Zhang, L. (2018). CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza. Phytochemistry 148, 63–70.Google Scholar
  197. Zhu, Y., Xu, J., Sun, C., Zhou, S., Xu, H., Nelson, D.R., Qian, J., Song, J., Luo, H., Xiang, L., et al. (2015). Chromosome-level genome map provides insights into diverse defense mechanisms in the medicinal fungus Ganoderma sinense. Sci Rep 5, 11087.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant DevelopmentPeking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
  2. 2.Yunnan Branch, Institute of Medicinal Plant DevelopmentPeking Union Medical College & Chinese Academy of Medical SciencesJinghongChina

Personalised recommendations