Science China Life Sciences

, Volume 62, Issue 1, pp 84–94 | Cite as

Rational design for fungal laccase production in the model host Aspergillus nidulans

  • Wei Li
  • Jingwen Yu
  • Zixin Li
  • Wen-Bing YinEmail author
Research Paper


Laccases, multicopper oxidoreductases, are mainly produced in white-rot fungi and are considered as ideal green catalysts in industrial and biotechnological applications. However, the development of laccases is limited due to the slow growth of natural laccase producing strains and the low expression levels of laccases. In this study, we designed three regulation strategies for laccase gene expression in the model fungus Aspergillus nidulans. By introducing various promoters in front of the laccase gene pslcc from the white-rot fungus Pycnoporus sanguineus, we found that the laccase gene with the original promoter had effective expression in A. nidulans. Using the previously identified transcription factor RsmA regulatory mechanism, the aflR promoter was inserted into the pslcc expression vectors, and the laccase production was 15-fold higher in the strain overexpressing of RsmA compared to the control strain. To improve the laccase yield, the dipeptidyl-peptidase DppV, aspartic protease PepA and mannosyltransferase Mnn9 were successfully deleted in the A. nidulans host. The laccase activities were increased approximately 8-fold and 13-fold in the double deletions strains of Δmnn9ΔpepA and ΔdppVΔpepA over the control strains, respectively. Taken together, these results not only demonstrate an efficient system for heterologous protein production in the model fungus A. nidulans but also provide a general approach to applying regulatory methods to control gene expression.


laccase heterologous expression promoter Aspergillus nidulans 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thanked Dr. Wei Xue for his help to clone the promoter and terminator sequence of pslcc gene in Pycnoporus sanguineus mk528. This work was supported by Beijing Natural Science Foundation (5152018), the National Natural Science Foundation of China (31470178) and Wen-Bing Yin is a scholar of “the 100 Talents Project” of CAS.

Supplementary material

11427_2017_9304_MOESM1_ESM.docx (423 kb)
Rational design for fungal laccase production in the model host Aspergillus nidulans


  1. Ahuja, M., Chiang, Y.M., Chang, S.L., Praseuth, M.B., Entwistle, R., Sanchez, J.F., Lo, H.C., Yeh, H.H., Oakley, B.R., and Wang, C.C.C. (2012). Illuminating the diversity of aromatic polyketide synthases in Aspergillus nidulans. J Am Chem Soc 134, 8212–8221.CrossRefGoogle Scholar
  2. Aleksenko, A., and Clutterbuck, A.J. (1997). Autonomous plasmid replication in Aspergillus nidulans: AMA1 and MATE elements. Fungal Genet Biol 21, 373–387.CrossRefGoogle Scholar
  3. Alves, A.M.C.R., Record, E., Lomascolo, A., Scholtmeijer, K., Asther, M., Wessels, J.G.H., and Wösten, H.A.B. (2004). Highly efficient production of laccase by the basidiomycete Pycnoporus cinnabarinus. Appl Environ Microbiol 70, 6379–6384.CrossRefGoogle Scholar
  4. Antošová, Z., and Sychrová, H. (2016). Yeast hosts for the production of recombinant laccases: a review. Mol Biotechnol 58, 93–116.CrossRefGoogle Scholar
  5. Baccile, J.A., Spraker, J.E., Le, H.H., Brandenburger, E., Gomez, C., Bok, J.W., Macheleidt, J., Brakhage, A.A., Hoffmeister, D., Keller, N.P., et al. (2016). Plant-like biosynthesis of isoquinoline alkaloids in Aspergillus fumigatus. Nat Chem Biol 12, 419–424.CrossRefGoogle Scholar
  6. Baldrian, P. (2006). Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30, 215–242.CrossRefGoogle Scholar
  7. Beauvais, A., Monod, M., Debeaupuis, J.P., Diaquin, M., Kobayashi, H., and Latgé, J.P. (1997). Biochemical and antigenic characterization of a new dipeptidyl-peptidase isolated from Aspergillus fumigatus. J Biol Chem 272, 6238–6244.CrossRefGoogle Scholar
  8. Benghazi, L., Record, E., Suárez, A., Gomez-Vidal, J.A., Martínez, J., and de la Rubia, T. (2014). Production of the Phanerochaete flavido-alba laccase in Aspergillus niger for synthetic dyes decolorization and biotransformation. World J Microbiol Biotechnol 30, 201–211.CrossRefGoogle Scholar
  9. Bok, J.W., and Keller, N.P. (2012). Fast and easy method for construction of plasmid vectors using modified quick-change mutagenesis. Methods Mol Biol 944, 163–174.Google Scholar
  10. Colao, M.C., Lupino, S., Garzillo, A.M., Buonocore, V., and Ruzzi, M. (2006). Heterologous expression of lcc1 gene from Trametes trogii in Pichia pastoris and characterization of the recombinant enzyme. Microb Cell Fact 5, 31.CrossRefGoogle Scholar
  11. Gershenzon, N.I., and Ioshikhes, I.P. (2005). Promoter classifier: software package for promoter database analysis. Appl BioInf 4, 205–209.CrossRefGoogle Scholar
  12. Hoopes, J.T., and Dean, J.F.D. (2004). Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiol Biochem 42, 27–33.CrossRefGoogle Scholar
  13. Iimura, Y., Sonoki, T., and Habe, H. (2018). Heterologous expression of Trametes versicolor laccase in Saccharomyces cerevisiae. Protein Express Purif 141, 39–43.CrossRefGoogle Scholar
  14. Jin, F.J., Watanabe, T., Juvvadi, P.R., Maruyama, J., Arioka, M., and Kitamoto, K. (2007). Double disruption of the proteinase genes, tppA and pepE, increases the production level of human lysozyme by Aspergillus oryzae. Appl Microbiol Biotechnol 76, 1059–1068.CrossRefGoogle Scholar
  15. Kiiskinen, L.L., Kruus, K., Bailey, M., Ylösmäki, E., Siika-Aho, M., and Saloheimo, M. (2004). Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. Microbiology 150, 3065–3074.CrossRefGoogle Scholar
  16. Kilaru, S., Hoegger, P.J., Majcherczyk, A., Burns, C., Shishido, K., Bailey, A., Foster, G.D., and Kües, U. (2006). Expression of laccase gene lcc1 in Coprinopsis cinerea under control of various basidiomycetous promoters. Appl Microbiol Biotechnol 71, 200–210.CrossRefGoogle Scholar
  17. Kitamoto, N., Ono, N., and Yoshino-Yasuda, S. (2015). Construction of quintuple protease and double amylase gene deletant for heterologous protein production in Aspergillus oryzae KBN616. Food Sci Technol Res 21, 297–307.CrossRefGoogle Scholar
  18. Kudanga, T., Nyanhongo, G.S., Guebitz, G.M., and Burton, S. (2011). Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme Microbial Tech 48, 195–208.CrossRefGoogle Scholar
  19. Larrondo, L.F., Avila, M., Salas, L., Cullen, D., and Vicuña, R. (2003). Heterologous expression of laccase cDNA from Ceriporiopsis subvermispora yields copper-activated apoprotein and complex isoform patterns. Microbiology 149, 1177–1182.CrossRefGoogle Scholar
  20. Liu, F., Yang, Y., and Zhou, Y. (2018). Polymerase delta in eukaryotes: how is it transiently exchanged with specialized DNA polymerases during translesion DNA synthesis? Curr Protein Pept Sci 19, 100–111.CrossRefGoogle Scholar
  21. Ma, Z., Li, W., Zhang, P., Lyu, H., Hu, Y., and Yin, W.B. (2018). Rational design for heterologous production of aurovertin-type compounds in Aspergillus nidulans. Appl Microbiol Biotechnol 102, 297–304.CrossRefGoogle Scholar
  22. Majeau, J.A., Brar, S.K., and Tyagi, R.D. (2010). Laccases for removal of recalcitrant and emerging pollutants. Bioresource Tech 101, 2331–2350.CrossRefGoogle Scholar
  23. Mander, G.J., Wang, H., Bodie, E., Wagner, J., Vienken, K., Vinuesa, C., Foster, C., Leeder, A.C., Allen, G., Hamill, V., et al. (2006). Use of laccase as a novel, versatile reporter system in filamentous fungi. Appl Environ Microbiol 72, 5020–5026.CrossRefGoogle Scholar
  24. Mayfield, M.B., Kishi, K., Alic, M., and Gold, M.H. (1994). Homologous expression of recombinant manganese peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 60, 4303–4309.Google Scholar
  25. Na, N., Huijun, T., Xinxin, S., and Jingfeng, N. (2017). Advance of heterologus expression study of eukaryote-origin laccases. Chin J Biotechnol 33, 565–577.Google Scholar
  26. Nevalainen, K.M.H., Te’o, V.S.J., and Bergquist, P.L. (2005). Heterologous protein expression in filamentous fungi. Trends Biotech 23, 468–474.CrossRefGoogle Scholar
  27. Nicolini, C., Bruzzese, D., Cambria, M.T., Bragazzi, N.L., and Pechkova, E. (2013). Recombinant laccase: I. Enzyme cloning and characterization. J Cell Biochem 114, 599–605.Google Scholar
  28. Otterbein, L., Record, E., Longhi, S., Asther, M., and Moukha, S. (2000). Molecular cloning of the cDNA encoding laccase from Pycnoporus cinnabarinus I-937 and expression in Pichia pastoris. Eur J Biochem 267, 1619–1625.CrossRefGoogle Scholar
  29. Pezzella, C., Autore, F., Giardina, P., Piscitelli, A., Sannia, G., and Faraco, V. (2009). The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members. Curr Genet 55, 45–57.CrossRefGoogle Scholar
  30. Pezzella, C., Lettera, V., Piscitelli, A., Giardina, P., and Sannia, G. (2013). Transcriptional analysis of Pleurotus ostreatus laccase genes. Appl Microbiol Biotechnol 97, 705–717.CrossRefGoogle Scholar
  31. Record, E., Punt, P.J., Chamkha, M., Labat, M., van den Hondel, C.A.M.J. J., and Asther, M. (2002). Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur J Biochem 269, 602–609.CrossRefGoogle Scholar
  32. Salony Garg, N., Baranwal, R., Chhabra, M., Mishra, S., Chaudhuri, T.K., and Bisaria, V.S. (2008). Laccase of Cyathus bulleri: structural, catalytic characterization and expression in Escherichia coli. Biochim Biophys Acta 1784, 259–268.CrossRefGoogle Scholar
  33. Sigoillot, C., Record, E., Belle, V., Robert, J.L., Levasseur, A., Punt, P.J., van den Hondel, C.A.M.J.J., Fournel, A., Sigoillot, J.C., and Asther, M. (2004). Natural and recombinant fungal laccases for paper pulp bleaching. Appl Microbiol Biotechnol 64, 346–352.CrossRefGoogle Scholar
  34. Soden, D.M., and Dobson, A.D.W. (2003). The use of amplified flanking region-PCR in the isolation of laccase promoter sequences from the edible fungus Pleurotus sajor-caju. J Appl Microbiol 95, 553–562.CrossRefGoogle Scholar
  35. Soukup, A.A., Fischer, G.J., Luo, J., and Keller, N.P. (2017). The Aspergillus nidulans Pbp1 homolog is required for normal sexual development and secondary metabolism. Fungal Genet Biol 100, 13–21.CrossRefGoogle Scholar
  36. Staaden, S., Milcu, A., Rohlfs, M., and Scheu, S. (2010). Fungal toxins affect the fitness and stable isotope fractionation of Collembola. Soil Biol Biochem 42, 1766–1773.CrossRefGoogle Scholar
  37. Van Dijk, J.W., and Wang, C.C. (2016). Heterologous expression of fungal secondary metabolite pathways in the Aspergillus nidulans host system. Methods Enzymol 575, 127–142.CrossRefGoogle Scholar
  38. van den Hombergh, J.P.T.W., van de Vondervoort, P.J.I., Fraissinet-Tachet, L., and Visser, J. (1997). Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotech 15, 256–263.CrossRefGoogle Scholar
  39. Wang, Y., Xue, W., Sims, A.H., Zhao, C., Wang, A., Tang, G., Qin, J., and Wang, H. (2008). Isolation of four pepsin-like protease genes from Aspergillus niger and analysis of the effect of disruptions on heterologous laccase expression. Fungal Genet Biol 45, 17–27.CrossRefGoogle Scholar
  40. Yang, J., Ng, T.B., Lin, J., and Ye, X. (2015). A novel laccase from basidiomycete Cerrena sp.: cloning, heterologous expression, and characterization. Int J Biol Macromol 77, 344–349.CrossRefGoogle Scholar
  41. Yaropolov, A.I., Skorobogat’ko, O.V., Vartanov, S.S., and Varfolomeyev, S. D. (1994). Laccase—properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol 49, 257–280.CrossRefGoogle Scholar
  42. Yin, W.B., Amaike, S., Wohlbach, D.J., Gasch, A.P., Chiang, Y.M., Wang, C.C.C., Bok, J.W., Rohlfs, M., and Keller, N.P. (2012). An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR. Mol Microbiol 83, 1024–1034.CrossRefGoogle Scholar
  43. Yin, W.B., Chooi, Y.H., Smith, A.R., Cacho, R.A., Hu, Y., White, T.C., and Tang, Y. (2013a). Discovery of cryptic polyketide metabolites from dermatophytes using heterologous expression in Aspergillus nidulans. ACS Synth Biol 2, 629–634.CrossRefGoogle Scholar
  44. Yin, W.B., Reinke, A.W., Szilágyi, M., Emri, T., Chiang, Y.M., Keating, A. E., Pócsi, I., Wang, C.C.C., and Keller, N.P. (2013b). bZIP transcription factors affecting secondary metabolism, sexual development and stress responses in Aspergillus nidulans. Microbiology 159, 77–88.CrossRefGoogle Scholar
  45. Yoon, J., Maruyama, J., and Kitamoto, K. (2011). Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins. Appl Microbiol Biotechnol 89, 747–759.CrossRefGoogle Scholar
  46. Yu, J.H., Hamari, Z., Han, K.H., Seo, J.A., Reyes-Domínguez, Y., and Scazzocchio, C. (2004). Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41, 973–981.CrossRefGoogle Scholar
  47. Zhang, J., Qu, Y., Xiao, P., Wang, X., Wang, T., and He, F. (2012). Improved biomass saccharification by Trichoderma reesei through heterologous expression of lacA gene from Trametes sp. AH28-2. J Biosci Bioeng 113, 697–703.CrossRefGoogle Scholar
  48. Zhang, P., Wang, X., Fan, A., Zheng, Y., Liu, X., Wang, S., Zou, H., Oakley, B.R., Keller, N.P., and Yin, W.B. (2017). A cryptic pigment biosynthetic pathway uncovered by heterologous expression is essential for conidial development in Pestalotiopsis fici. Mol Microbiol 105, 469–483.CrossRefGoogle Scholar
  49. Zhang, S.Y., Zhao, C.B., Guo, L., and Li, W. (2015). Decolorization of Congo red with laccase from Pycnoporus sanguineus mk528 under mediator conditions. J Biol 32, 30–36.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wei Li
    • 1
    • 2
  • Jingwen Yu
    • 1
    • 2
  • Zixin Li
    • 1
    • 2
  • Wen-Bing Yin
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  2. 2.Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations