We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Advertisement

Loss of Hox5 function results in myofibroblast mislocalization and distal lung matrix defects during postnatal development

Abstract

Alveologenesis is the final stage of lung development and is responsible for the formation of the principle gas exchange units called alveoli. The lung mesenchyme, in particular the alveolar myofibroblasts, are drivers of alveolar development, however, few key regulators that govern the proper distribution and behavior of these cells in the distal lung during alveologenesis have been identified. While Hox5 triple mutants (Hox5 aabbcc) exhibit neonatal lethality, four-allele, compound mutant mice (Hox5 AabbCc) are born in Mendelian ratios and are phenotypically normal at birth. However, they exhibit defects in alveologenesis characterized by a BPD-like phenotype by early postnatal stages that becomes more pronounced at adult stages. Invasive pulmonary functional analyses demonstrate significant increases in total lung volume and compliance and a decrease in elastance in Hox5 compound mutants. SMA+ myofibroblasts in the distal lung are distributed abnormally during peak stages of alveologenesis and aggregate, resulting in the formation of a disrupted elastin network. Examination of other key components of the distal lung ECM, as well as other epithelial cells and lipofibroblasts reveal no differences in distribution. Collectively, these data indicate that Hox5 genes play a critical role in alveolar development by governing the proper cellular behavior of myofibroblasts during alveologenesis.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. Ahlfeld, S.K., and Conway, S.J. (2012). Aberrant signaling pathways of the lung mesenchyme and their contributions to the pathogenesis of bronchopulmonary dysplasia. Birth Defects Res Part A-Clinical Mol Teratology 94, 3–15.

  2. Aubin, J., Lemieux, M., Tremblay, M., Bérard, J., and Jeannotte, L. (1997). Early postnatal lethality in Hoxa-5 mutant mice is attributable to respiratory tract defects. Dev Biol 192, 432–445.

  3. Boucherat, O., Montaron, S., Bérubé-Simard, F.A., Aubin, J., Philippidou, P., Wellik, D.M., Dasen, J.S., and Jeannotte, L. (2013). Partial functional redundancy betweenHoxa5 andHoxb5 paralog genes during lung morphogenesis. Am J Physiol-Lung Cellular Mol Physiol 304, L817–L830.

  4. Branchfield, K., Li, R., Lungova, V., Verheyden, J.M., McCulley, D., and Sun, X. (2016). A three-dimensional study of alveologenesis in mouse lung. Dev Biol 409, 429–441.

  5. Brody, J.S., and Kaplan, N.B. (1983). Proliferation of alveolar interstitial cells during postnatal lung growth. Evidence for two distinct populations of pulmonary fibroblasts. Am Rev Resp Dis 127, 763–770.

  6. Butts, T., Holland, P.W.H., and Ferrier, D.E.K. (2008). The urbilaterian Super-Hox cluster. Trends Genets 24, 259–262.

  7. Condie, B.G., and Capecchi, M.R. (1994). Mice with targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 reveal synergistic interactions. Nature 370, 304–307.

  8. Di Meglio, T., Kratochwil, C.F., Vilain, N., Loche, A., Vitobello, A., Yonehara, K., Hrycaj, S.M., Roska, B., Peters, A.H.F.M., Eichmann, A., et al. (2013). Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons. Science 339, 204–207.

  9. Duboule, D. (1994). Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev Suppl, 135–142.

  10. Duboule, D., and Dolle, P. (1989). The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. Embo J 8, 1497–1505.

  11. Galambos, C., and Demello, D.E. (2008). Regulation of alveologenesis clinical implications of impaired growth. Pathology 40, 124–140.

  12. Graham, A., Papalopulu, N., and Krumlauf, R. (1989). The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57, 367–378.

  13. Hamilton, T.G., Klinghoffer, R.A., Corrin, P.D., and Soriano, P. (2003). Evolutionary divergence of platelet-derived growth factor alpha receptor signaling mechanisms. Mol Cellular Biol 23, 4013–4025.

  14. Hantos, Z., Adamicza, A., Jánosi, T.Z., Szabari, M.V., Tolnai, J., and Suki, B. (2008). Lung volumes and respiratory mechanics in elastase-induced emphysema in mice. J Appl Physiol 105, 1864–1872.

  15. Hines, E.A., and Sun, X. (2014). Tissue crosstalk in lung development. J Cell Biochem 115, 1469–1477.

  16. Holland, P.W.H. (2013). Evolution of homeobox genes. WIREs Dev Biol 2, 31–45.

  17. Holland, P.W. (2015). Did homeobox gene duplications contribute to the Cambrian explosion? Zool Let 1, 1.

  18. Horan, G.S., Ramirez-Solis, R., Featherstone, M.S., Wolgemuth, D.J., Bradley, A., and Behringer, R.R. (1995). Compound mutants for the paralogous hoxa-4, hoxb-4, and hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed.. Genes Dev 9, 1667–1677.

  19. Hrycaj, S.M., Dye, B.R., Baker, N.C., Larsen, B.M., Burke, A.C., Spence, J.R., and Wellik, D.M. (2015). Hox5 genes regulate the Wnt2/2b-Bmp4- signaling axis during lung development. Cell Rep 12, 903–912.

  20. Hsieh-Li, H.M., Witte, D.P., Weinstein, M., Branford, W., Li, H., Small, K., and Potter, S.S. (1995). Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development 121, 1373–1385.

  21. Kessel, M., and Gruss, P. (1990). Murine developmental control genes. Science 249, 374–379.

  22. Klinghoffer, R.A., Hamilton, T.G., Hoch, R., and Soriano, P. (2002). An allelic series at the PDGFaR locus indicates unequal contributions of distinct signaling pathways during development. Dev Cell 2, 103–113.

  23. Krumlauf, R. (1992). Evolution of the vertebrateHox homeobox genes. BioEssays 14, 245–252.

  24. Krumlauf, R. (1993). Mouse Hox genetic functions. Curr Opin Genet Dev 3, 621–625.

  25. Larsen, B.M., Hrycaj, S.M., Newman, M., Li, Y., and Wellik, D.M. (2015). MesenchymalHox6 function is required for mouse pancreatic endocrine cell differentiation. Development 142, 3859–3868.

  26. Leucht, P., Kim, J.B., Amasha, R., James, A.W., Girod, S., and Helms, J.A. (2008). Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development 135, 2845–2854.

  27. Mandeville, I., Aubin, J., LeBlanc, M., Lalancette-Hébert, M., Janelle, M. F., Tremblay, G.M., and Jeannotte, L. (2006). Impact of the loss of Hoxa5 function on lung alveogenesis. Am J Pathol 169, 1312–1327.

  28. Manley, N.R., and Capecchi, M.R. (1995). The role of Hoxa-3 in mouse thymus and thyroid development. Development 121, 1989–2003.

  29. Manley, N.R., and Capecchi, M.R. (1998). HoxGroup 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev Biol 195, 1–15.

  30. Martinez, P., and Amemiya, C.T. (2002). Genomics of the HOX gene cluster. Comp Biochem Phys B 133, 571–580.

  31. McCulley, D., Wienhold, M., and Sun, X. (2015). The pulmonary mesenchyme directs lung development. Curr Opin Genet Dev 32, 98–105.

  32. McGinnis, W., and Krumlauf, R. (1992). Homeobox genes and axial patterning. Cell 68, 283–302.

  33. McIntyre, D.C., Rakshit, S., Yallowitz, A.R., Loken, L., Jeannotte, L., Capecchi, M.R., and Wellik, D.M. (2007). Hox patterning of the vertebrate rib cage. Development 134, 2981–2989.

  34. Morrisey, E.E., and Hogan, B.L.M. (2010). Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18, 8–23.

  35. Papagiannouli, F., Schardt, L., Grajcarek, J., Ha, N., and Lohmann, I. (2014). The Hox gene Abd-B controls stem cell niche function in the Drosophila testis. Dev Cell 28, 189–202.

  36. Pineault, K.M., Swinehart, I.T., Garthus, K.N., Ho, E., Yao, Q., Schipani, E., Kozloff, K.M., and Wellik, D.M. (2015). Hox11 genes regulate postnatal longitudinal bone growth and growth plate proliferation. Biol Open 4, 1538–1548.

  37. Ptaschinski, C., Hrycaj, S.M., Schaller, M.A., Wellik, D.M., and Lukacs, N. W. (2017). Hox5 paralogous genes modulate Th2 cell function during chronic allergic inflammation via regulation ofGata3. JI 199, 501–509.

  38. Rinn, J.L., Wang, J.K., Allen, N., Brugmann, S.A., Mikels, A.J., Liu, H., Ridky, T.W., Stadler, H.S., Nusse, R., Helms, J.A., et al. (2008). A dermal HOX transcriptional program regulates site-specific epidermal fate. Genes Dev 22, 303–307.

  39. Rousso, D.L., Gaber, Z.B., Wellik, D., Morrisey, E.E., and Novitch, B.G. (2008). Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of spinal motor neurons. Neuron 59, 226–240.

  40. Rux, D.R., Song, J.Y., Pineault, K.M., Mandair, G.S., Swinehart, I.T., Schlientz, A.J., Garthus, K.N., Goldstein, S.A., Kozloff, K.M., and Wellik, D.M. (2017). Hox11 function is required for region-specific fracture repair. J Bone Miner Res 32, 1750–1760.

  41. Rux, D.R., Song, J.Y., Swinehart, I.T., Pineault, K.M., Schlientz, A.J., Trulik, K.G., Goldstein, S.A., Kozloff, K.M., Lucas, D., and Wellik, D. M. (2016). Regionally restricted Hox function in adult bone marrow multipotent mesenchymal stem/stromal cells. Dev Cell 39, 653–666.

  42. Sajjan, U., Ganesan, S., Comstock, A.T., Shim, J., Wang, Q., Nagarkar, D. R., Zhao, Y., Goldsmith, A.M., Sonstein, J., Linn, M.J., et al. (2009). Elastase- and LPS-exposed mice display altered responses to rhinovirus infection. Am J Physiol-Lung Cell Mol Physiol 297, L931–L944.

  43. Schughart, K., Kappen, C., and Ruddle, F.H. (1988). Mammalian homeobox- containing genes: genome organization, structure, expression and evolution. Br J Cancer Suppl 9, 9–13.

  44. Stultz, B.G., Park, S.Y., Mortin, M.A., Kennison, J.A., and Hursh, D.A. (2012). Hox proteins coordinate peripodial decapentaplegic expression to direct adult head morphogenesis in Drosophila. Dev Biol 369, 362–376.

  45. Vanoirbeek, J.A.J., Rinaldi, M., De Vooght, V., Haenen, S., Bobic, S., Gayan-Ramirez, G., Hoet, P.H.M., Verbeken, E., Decramer, M., Nemery, B., et al. (2010). Noninvasive and invasive pulmonary function in mouse models of obstructive and restrictive respiratory diseases. Am J Respir Cell Mol Biol 42, 96–104.

  46. Wellik, D.M. (2007). Hox patterning of the vertebrate axial skeleton. Dev Dyn 236, 2454–2463.

  47. Wellik, D.M. (2009). Hox genes and vertebrate axial pattern. Curr Top Dev Biol 88, 257–278.

  48. Wellik, D.M., Hawkes, P.J., and Capecchi, M.R. (2002). Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev 16, 1423–1432.

  49. Xu, B., Hrycaj, S.M., McIntyre, D.C., Baker, N.C., Takeuchi, J.K., Jeannotte, L., Gaber, Z.B., Novitch, B.G., and Wellik, D.M. (2013). Hox5 interacts with Plzf to restrict Shh expression in the developing forelimb. Proc Natl Acad Sci USA 110, 19438–19443.

  50. Yallowitz, A.R., Hrycaj, S.M., Short, K.M., Smyth, I.M., and Wellik, D.M. (2011). Hox10 genes function in kidney development in the differentiation and integration of the cortical stroma. PLoS ONE 6, e23410.

Download references

Acknowledgements

This work was supported by a Ruth L. Kirschstein National Research Service Award (NSRA) training Grant 5 T32 HL 7749-20 to S.M.H. This research was also supported by MICHR PTSP UL1TR002240 to L.M.S and the National Heart, Lung, and Blood Institute (NHLBI) R01-HL119215 to D.M.W.

Author information

Correspondence to Deneen M. Wellik.

Electronic supplementary material

Supplementary material, approximately 35.5 MB.

Supplementary material, approximately 35.5 MB.

Supplementary material, approximately 46.3 MB.

Supplementary material, approximately 46.3 MB.

Supplementary material, approximately 722 KB.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hrycaj, S.M., Marty-Santos, L., Rasky, A.J. et al. Loss of Hox5 function results in myofibroblast mislocalization and distal lung matrix defects during postnatal development. Sci. China Life Sci. 61, 1030–1038 (2018). https://doi.org/10.1007/s11427-017-9290-1

Download citation

Keywords

  • Hox5
  • alveologenesis
  • alveolar myofibroblasts
  • lung ECM
  • postnatal lung development