Science China Life Sciences

, Volume 61, Issue 8, pp 992–995 | Cite as

CAPS/dCAPS Designer: a web-based high-throughput dCAPS marker design tool

  • Lei Li
  • Jiajun Liu
  • Xiang Xue
  • Changcheng Li
  • Zefeng Yang
  • Tao LiEmail author
Letter to the Editor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Dr. Xujiang Wu for validating the dCAPS markers. This work was supported by the State’s Key Project of Research & Development Plan for Breeding of Top-seven Crops (2017YFD0100801), the National Natural Science Foundation of China (31600997, 31771772), the Yangzhou Key Research and Development Program (YZ2016035) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Supplementary material

11427_2017_9286_MOESM1_ESM.pptx (372 kb)
Supplementary material, approximately 372 KB.
11427_2017_9286_MOESM2_ESM.xls (29.3 mb)
Table S1. dCAPS primer pairs of 820K wheat Axiom array in F-model
11427_2017_9286_MOESM3_ESM.xls (29.2 mb)
Table S2. dCAPS primer pairs of 820K wheat Axiom array in R-model
11427_2017_9286_MOESM4_ESM.xls (21.3 mb)
Table S3. CAPS primer pairs of 820K wheat Axiom array in C-model
11427_2017_9286_MOESM5_ESM.xls (56.5 mb)
Table S4. dCAPS primer pairs of 660K wheat array in F-model
11427_2017_9286_MOESM6_ESM.xls (56.5 mb)
Table S5. dCAPS primer pairs of 660K wheat array in R-model
11427_2017_9286_MOESM7_ESM.xls (39.5 mb)
Table S6. CAPS primer pairs of 660K wheat array in C-model
11427_2017_9286_MOESM8_ESM.xlsx (12 kb)
Table S7 Validation of the dCAPS markers.


  1. Allen, A.M., Barker, G.L.A., Wilkinson, P., Burridge, A., Winfield, M., Coghill, J., Uauy, C., Griffiths, S., Jack, P., Berry, S., et al. (2013). Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnol J 11, 279–295.CrossRefPubMedGoogle Scholar
  2. Ilic, K., Berleth, T., and Provart, N.J. (2004). BlastDigester—a web-based program for efficient CAPS marker design. Trends Genet 20, 280–283.CrossRefPubMedGoogle Scholar
  3. Pidon, H., Ghesquière, A., Chéron, S., Issaka, S., Hébrard, E., Sabot, F., Kolade, O., Silué, D., and Albar, L. (2017). Fine mapping of RYMV3: a new resistance gene to rice yellow mottle virus from Oryza glaberrima. Theor Appl Genet 130, 807–818.CrossRefPubMedGoogle Scholar
  4. Semagn, K., Babu, R., Hearne, S., and Olsen, M. (2014). Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breeding 33, 1–14.CrossRefGoogle Scholar
  5. Singh, V.K., Khan, A.W., Jaganathan, D., Thudi, M., Roorkiwal, M., Takagi, H., Garg, V., Kumar, V., Chitikineni, A., Gaur, P.M., et al. (2016). QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14, 2110–2119.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lei Li
    • 1
  • Jiajun Liu
    • 1
  • Xiang Xue
    • 2
  • Changcheng Li
    • 1
  • Zefeng Yang
    • 1
  • Tao Li
    • 1
    Email author
  1. 1.Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of Ministry of EducationYangzhou UniversityYangzhouChina
  2. 2.Department of Landscape and GardenYangzhou Polytechnic CollegeYangzhouChina

Personalised recommendations