Science China Life Sciences

, Volume 61, Issue 7, pp 753–761 | Cite as

Microbiome analysis and -omics studies of microbial denitrification processes in wastewater treatment: recent advances

  • Lili Miao
  • Zhipei Liu


Nitrogen pollution is an increasingly severe worldwide problem because of drainage of nitrogen-containing wastewater and intensive application of nitrogen-containing fertilizers. Denitrification, a key process in nitrogen cycles, is commonly employed for nitrogen removal in engineered wastewater treatment systems. Biological denitrification is performed by denitrifying microbes (bacteria) that use nitrate as terminal electron acceptor. Better understanding the functions of diverse microbial populations in denitrification-based wastewater treatment systems, and the interactions of these populations with operating environments, is essential for improving both treatment performance and system stability. Recent advances in “meta-omics” (e. g., genomics, transcriptomics, proteomics, metabolomics), other molecular biology tools, and microbiome analysis have greatly enhanced such understanding. This minireview summarizes recent findings regarding microbial community structure and composition, key functional microbes and their physiology, functional genes involved in nitrogen cycle, and responses of microbes and their genes to changes of environmental factors or operating parameters, in denitrification processes in wastewater treatment systems. Of particular interest are heterotrophic denitrification systems (which require alternative organic carbon sources) and the autotrophic denitrification systems (which do not require an external carbon source). Integrated microbiome and -omics approaches have great future potential for determination of optimal environmental and biotechnological parameters, novel process development, and improvement of nitrogen removal efficiency and system stability.


wastewater treatment nitrogen removal denitrification microbiome analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to Dr. S. Anderson for English editing of the manuscript. This work was supported by the projects of National Key Research and Development Program of China (2016YFD0501409).


  1. Abu-Alhail, S., and Lu, X.W. (2014). Experimental investigation and modeling of innovative five-tank anaerobic-anoxic/oxic process. Appl Math Model 38, 278–290.CrossRefGoogle Scholar
  2. Allende, K.L., McCarthy, D.T., and Fletcher, T.D. (2014). The influence of media type on removal of arsenic, iron and boron from acidic wastewater in horizontal flow wetland microcosms planted with Phragmites australis. Chem Eng J 246, 217–228.CrossRefGoogle Scholar
  3. Ashok, V., and Hait, S. (2015). Remediation of nitrate-contaminated water by solid-phase denitrification process—a review. Environ Sci Pollut Res 22, 8075–8093.CrossRefGoogle Scholar
  4. Baek, G., Cheon, S.P., Kim, S., Kim, Y., Kim, H., Kim, C., and Kim, S. (2012). Modular neural networks prediction model based A2/O process control system. Int J Precis Eng Manuf 13, 905–913.CrossRefGoogle Scholar
  5. Baumann, B., Snozzi, M., Zehnder, A.J., and Van Der Meer, J.R. (1996). Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. J Bacteriol 178, 4367–4374.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bowen, J.L., Byrnes, J.E.K., Weisman, D., and Colaneri, C. (2013). Functional gene pyrosequencing and network analysis: an approach to examine the response of denitrifying bacteria to increased nitrogen supply in salt marsh sediments. Front Microbiol 4, 342.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carvalho, G., Lemos, P.C., Oehmen, A., and Reis, M.A.M. (2007). Denitrifying phosphorus removal: linking the process performance with the microbial community structure. Water Res 41, 4383–4396.CrossRefPubMedGoogle Scholar
  8. Chen, Y., Lan, S., Wang, L., Dong, S., Zhou, H., Tan, Z., and Li, X. (2017). A review: driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems. Chemosphere 174, 173–182.CrossRefPubMedGoogle Scholar
  9. Chen, Y., Zhao, Z., Peng, Y., Li, J., Xiao, L., and Yang, L. (2016). Performance of a full-scale modified anaerobic/anoxic/oxic process: highthroughput sequence analysis of its microbial structures and their community functions. Bioresource Tech 220, 225–232.CrossRefGoogle Scholar
  10. Cherchi, C., Onnis-Hayden, A., El-Shawabkeh, I., and Gu, A.Z. (2009). Implication of using different carbon sources for denitrification in wastewater treatments. Water Environ Res 81, 788–799.CrossRefPubMedGoogle Scholar
  11. Cowan, D., Meyer, Q., Stafford, W., Muyanga, S., Cameron, R., and Wittwer, P. (2005). Metagenomic gene discovery: past, present and future. Trends Biotech 23, 321–329.CrossRefGoogle Scholar
  12. Davies, K.J., Lloyd, D., and Boddy, L. (1989). The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa. J Gen Microbiol 135, 2445–2451.PubMedGoogle Scholar
  13. Deng, S., Li, D., Yang, X., Xing, W., Li, J., and Zhang, Q. (2016). Biological denitrification process based on the Fe(0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition. Bioresource Tech 219, 677–686.CrossRefGoogle Scholar
  14. Desloover, J., Vlaeminck, S.E., Clauwaert, P., Verstraete, W., and Boon, N. (2012). Strategies to mitigate N2O emissions from biological nitrogen removal systems. Curr Opin Biotech 23, 474–482.CrossRefPubMedGoogle Scholar
  15. Doherty, L., Zhao, Y., Zhao, X., Hu, Y., Hao, X., Xu, L., and Liu, R. (2015). A review of a recently emerged technology: constructed wetland— Microbial fuel cells. Water Res 85, 38–45.CrossRefPubMedGoogle Scholar
  16. Fahrbach, M., Kuever, J., Meinke, R., Kampfer, P., and Hollender, J. (2006). Denitratisoma oestradiolicum gen. nov., sp. nov., a 17beta-oestradiol-degrading, denitrifying beta proteobacterium. Int J Syst Evol Microbiol 56, 1547–1552.CrossRefPubMedGoogle Scholar
  17. Fierer, N., Ladau, J., Clemente, J.C., Leff, J.W., Owens, S.M., Pollard, K. S., Knight, R., Gilbert, J.A., and McCulley, R.L. (2013). Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624.CrossRefPubMedGoogle Scholar
  18. Flores, A. 3rd, Nisola, G.M., Cho, E., Gwon, E.M., Kim, H., Lee, C., Park, S., and Chung, W.J. (2007). Bioaugmented sulfur-oxidizing denitrification system with Alcaligenes defragrans B21 for high nitrate containing wastewater treatment. Bioprocess Biosyst Eng 30, 197–205.CrossRefPubMedGoogle Scholar
  19. Fu, G., Huangshen, L., Guo, Z., Zhou, Q., and Wu, Z. (2017). Effect of plant-based carbon sources on denitrifying microorganisms in a vertical flow constructed wetland. Bioresource Tech 224, 214–221.CrossRefGoogle Scholar
  20. Gamble, T.N., Betlach, M.R., and Tiedje, J.M. (1977). Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol 33, 926–939.PubMedPubMedCentralGoogle Scholar
  21. Geets, J., de Cooman, M., Wittebolle, L., Heylen, K., Vanparys, B., De Vos, P., Verstraete, W., and Boon, N. (2007). Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Appl Microbiol Biotechnol 75, 211–221.CrossRefPubMedGoogle Scholar
  22. Gomez-Alvarez, V., Revetta, R.P., and Santo Domingo, J.W. (2012). Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system. BMC Microbiol 12, 122.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gude, V.G. (2015). A new perspective on microbiome and resource management in wastewater systems. J Biotechnol Biomater in press doi: 10.4172/2155-952X.1000184.Google Scholar
  24. Gumaelius, L., Magnusson, G., Pettersson, B., and Dalhammar, G. (2001). Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 51, 999–1006.CrossRefPubMedGoogle Scholar
  25. He, S., Kunin, V., Haynes, M., Martin, H.G., Ivanova, N., Rohwer, F., Hugenholtz, P., and McMahon, K.D. (2010). Metatranscriptomic array analysis of ‘Candidatus Accumulibacter phosphatis’-enriched enhanced biological phosphorus removal sludge. Environ Microbiol 12, 1205–1217.CrossRefPubMedGoogle Scholar
  26. Hernandez, D., and Rowe, J.J. (1988). Oxygen inhibition of nitrate uptake is a general regulatory mechanism in nitrate respiration. J Biol Chem 263, 7937–7939.PubMedGoogle Scholar
  27. Heylen, K., Vanparys, B., Wittebolle, L., Verstraete, W., Boon, N., and De Vos, P. (2006). Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study. Appl Environ MicroBiol 72, 2637–2643.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hu, M., Wang, X., Wen, X., and Xia, Y. (2012). Microbial community structures in different wastewater treatment plants as revealed by 454- pyrosequencing analysis. Bioresource Tech 117, 72–79.CrossRefGoogle Scholar
  29. Jia, W., Liang, S., Zhang, J., Ngo, H.H., Guo, W., Yan, Y., and Zou, Y. (2013). Nitrous oxide emission in low-oxygen simultaneous nitrification and denitrification process: sources and mechanisms. Bioresource Tech 136, 444–451.CrossRefGoogle Scholar
  30. Jiang, K., Sanseverino, J., Chauhan, A., Lucas, S., Copeland, A., Lapidus, A., Del Rio, T.G., Dalin, E., Tice, H., Bruce, D., Goodwin, L., Pitluck, S., Sims, D., Brettin, T., Detter, J.C., Han, C., Chang, Y.J., Larimer, F., Land, M., Hauser, L., Kyrpides, N.C., Mikhailova, N., Moser, S., Jegier, P., Close, D., Debruyn, J.M., Wang, Y., Layton, A.C., Allen, M.S., and Sayler, G.S. (2012). Complete genome sequence of Thauera aminoaromatica strain MZ1T. Stand Genomic Sci 6, 325–335.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kampschreur, M.J., Temmink, H., Kleerebezem, R., Jetten, M.S.M., and van Loosdrecht, M.C.M. (2009). Nitrous oxide emission during wastewater treatment. Water Res 43, 4093–4103.CrossRefPubMedGoogle Scholar
  32. Karanasios, K.A., Vasiliadou, I.A., Pavlou, S., and Vayenas, D.V. (2010). Hydrogenotrophic denitrification of potable water: a review. J Hazard Mater 180, 20–37.CrossRefPubMedGoogle Scholar
  33. Karlsson, F.H., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C.J., Fagerberg, B., Nielsen, J., and Bäckhed, F. (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Khan, S.T., Horiba, Y., Yamamoto, M., and Hiraishi, A. (2002). Members of the family comamonadaceae as primary poly(3-hydroxybutyrate-co- 3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Appl Environ Microbiol 68, 3206–3214.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Khanitchaidecha, W., Shakya, M., Nakano, Y., Tanaka, Y., and Kazama, F. (2012). Development of an attached growth reactor for NH4-N removal at a drinking water supply system in Kathmandu Valley, Nepal. J Environ Sci Health Part A 47, 734–743.CrossRefGoogle Scholar
  36. Kim, B.C., Kim, S., Shin, T., Kim, H., and Sang, B.I. (2013a). Comparison of the bacterial communities in anaerobic, anoxic, and oxic chambers of a pilot A2O process using pyrosequencing analysis. Curr Microbiol 66, 555–565.CrossRefPubMedGoogle Scholar
  37. Kim, I.S., Ekpeghere, K., Ha, S.Y., Kim, S.H., Kim, B.S., Song, B., Chun, J., Chang, J.S., Kim, H.G., and Koh, S.C. (2013b). An eco-friendly treatment of tannery wastewater using bioaugmentation with a novel microbial consortium. J Environ Sci Health Part A 48, 1732–1739.CrossRefGoogle Scholar
  38. Kim, I.S., Ekpeghere, K.I., Ha, S.Y., Kim, B.S., Song, B., Kim, J.T., Kim, H.G., and Koh, S.C. (2014). Full-scale biological treatment of tannery wastewater using the novel microbial consortium BM-S-1. J Environ Sci Health Part A 49, 355–364.CrossRefGoogle Scholar
  39. Knowles, R. (1982). Denitrification. Microbiol Rev 46, 43–70.PubMedPubMedCentralGoogle Scholar
  40. Knowles, R. (1996). Denitrification: microbiology and ecology. Life Support Biosph Sci 3, 31–34.PubMedGoogle Scholar
  41. Korner, H., and Zumft, W.G. (1989). Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl Environ Microbiol 55, 1670–1676.PubMedPubMedCentralGoogle Scholar
  42. Liu, Y., Ai, G.M., Miao, L.L., and Liu, Z.P. (2016). Marinobacter strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N2O emission. Bioresource Tech 206, 9–15.CrossRefGoogle Scholar
  43. Lu, H., and Chandran, K. (2010). Diagnosis and quantification of glycerol assimilating denitrifying bacteria in an integrated fixed-film activated sludge reactor via13C DNA stable-isotope probing. Environ Sci Technol 44, 8943–8949.CrossRefPubMedGoogle Scholar
  44. Lu, H., Chandran, K., and Stensel, D. (2014). Microbial ecology of denitrification in biological wastewater treatment. Water Res 64, 237–254.CrossRefPubMedGoogle Scholar
  45. Martineau, C., Villeneuve, C., Mauffrey, F., and Villemur, R. (2013). Hyphomicrobium nitrativorans sp. nov., isolated from the biofilm of a methanol-fed denitrification system treating seawater at the Montreal Biodome. Int J Syst Evol Microbiol 63, 3777–3781.CrossRefPubMedGoogle Scholar
  46. Massara, T.M., Malamis, S., Guisasola, A., Baeza, J.A., Noutsopoulos, C., and Katsou, E. (2017). A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Sci Total Environ 596–597, 106–123.CrossRefPubMedGoogle Scholar
  47. Miao, J., Chi, L., Pan, L., and Song, Y. (2015). Generally detected genes in comparative transcriptomics in bivalves: toward the identification of molecular markers of cellular stress response. Environ Toxicol Pharmacol 39, 475–481.CrossRefPubMedGoogle Scholar
  48. Modin, O., Fukushi, K., and Yamamoto, K. (2007). Denitrification with methane as external carbon source. Water Res 41, 2726–2738.CrossRefPubMedGoogle Scholar
  49. Mohseni-Bandpi, A., Elliott, D.J., and Zazouli, M.A. (2013). Biological nitrate removal processes from drinking water supply-a review. J Environ Health Sci Eng 11, 35.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mousavi, S., Ibrahim, S., and Aroua, M.K. (2012). Sequential nitrification and denitrification in a novel palm shell granular activated carbon twinchamber upflow bio-electrochemical reactor for treating ammoniumrich wastewater. Bioresource Tech 125, 256–266.CrossRefGoogle Scholar
  51. Neef, A., Zaglauer, A., Meier, H., Amann, R., Lemmer, H., and Schleifer, K.H. (1996). Population analysis in a denitrifying sand filter: conventional and in situ identification of Paracoccus spp. in methanol-fed biofilms. Appl Environ Microbiol 62, 4329–4339.PubMedPubMedCentralGoogle Scholar
  52. Nguyen, V.K., Hong, S., Park, Y., Jo, K., and Lee, T. (2015). Autotrophic denitrification performance and bacterial community at biocathodes of bioelectrochemical systems with either abiotic or biotic anodes. J Biosci Bioeng 119, 180–187.CrossRefPubMedGoogle Scholar
  53. Pan, Y., Ni, B.J., Bond, P.L., Ye, L., and Yuan, Z. (2013a). Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Res 47, 3273–3281.CrossRefPubMedGoogle Scholar
  54. Pan, Y., Ni, B.J., and Yuan, Z. (2013b). Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification. Environ Sci Technol 47, 11083–11091.CrossRefPubMedGoogle Scholar
  55. Pan, Y., Ye, L., Ni, B.J., and Yuan, Z. (2012). Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers. Water Res 46, 4832–4840.CrossRefPubMedGoogle Scholar
  56. Park, J.H., Choi, O., Lee, T.H., Kim, H., and Sang, B.I. (2016). Pyrosequencing analysis of microbial communities in hollow fiber-membrane biofilm reactors system for treating high-strength nitrogen wastewater. Chemosphere 163, 192–201.CrossRefPubMedGoogle Scholar
  57. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D.R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J.M., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H.B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Doré, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., Antolin, M., Artiguenave, F., Blottiere, H., Borruel, N., Bruls, T., Casellas, F., Chervaux, C., Cultrone, A., Delorme, C., Denariaz, G., Dervyn, R., Forte, M., Friss, C., van de Guchte, M., Guedon, E., Haimet, F., Jamet, A., Juste, C., Kaci, G., Kleerebezem, M., Knol, J., Kristensen, M., Layec, S., Le Roux, K., Leclerc, M., Maguin, E., Melo Minardi, R., Oozeer, R., Rescigno, M., Sanchez, N., Tims, S., Torrejon, T., Varela, E., de Vos, W., Winogradsky, Y., Zoetendal, E., Bork, P., Ehrlich, S.D., and Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Remmas, N., Melidis, P., Katsioupi, E., and Ntougias, S. (2016). Effects of aerated and fed membrane bioreactor treating landfill leachate. Bioresource Tech 220, 557–565.CrossRefGoogle Scholar
  59. Roume, H., Heintz-Buschart, A., Muller, E.E.L., May, P., Satagopam, V.P., Laczny, C.C., Narayanasamy, S., Lebrun, L.A., Hoopmann, M.R., Schupp, J.M., Gillece, J.D., Hicks, N.D., Engelthaler, D.M., Sauter, T., Keim, P.S., Moritz, R.L., and Wilmes, P. (2015). Comparative integrated omics: identification of key functionalities in microbial community- wide metabolic networks. NPJ Biofilms Microbiomes 1, 15007.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ruan, Y.J., Deng, Y.L., Guo, X.S., Timmons, M.B., Lu, H.F., Han, Z.Y., Ye, Z.Y., Shi, M.M., and Zhu, S.M. (2016). Simultaneous ammonia and nitrate removal in an airlift reactor using poly(butylene succinate) as carbon source and biofilm carrier. Bioresource Tech 216, 1004–1013.CrossRefGoogle Scholar
  61. Scholten, E., Lukow, T., Auling, G., Kroppenstedt, R.M., Rainey, F.A., and Diekmann, H. (1999). Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant. Int J Syst Bacteriol 49 Pt 3, 1045–1051.CrossRefGoogle Scholar
  62. Shao, M.F., Zhang, T., and Fang, H.H.P. (2010). Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl Microbiol Biotechnol 88, 1027–1042.CrossRefPubMedGoogle Scholar
  63. Shao, M.F., Zhang, T., Fang, H.H., and Li, X. (2011). The effect of nitrate concentration on sulfide-driven autotrophic denitrification in marine sediment. Chemosphere 83, 1–6.CrossRefPubMedGoogle Scholar
  64. Shi, Y., McCarren, J., and DeLong, E.F. (2012). Transcriptional responses of surface water marine microbial assemblages to deep-sea water amendment. Environ Microbiol 14, 191–206.CrossRefPubMedGoogle Scholar
  65. Shi, Y., Tyson, G.W., Eppley, J.M., and DeLong, E.F. (2011). Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J 5, 999–1013.CrossRefPubMedGoogle Scholar
  66. Smith, K.A., Mosier, A.R., Crutzen, P.J., and Winiwarter, W. (2012). The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth’s climate. Philos Trans R Soc B-Biol Sci 367, 1169–1174.CrossRefGoogle Scholar
  67. Smith, R.L., and Yoshinari, T. (2008). Occurrence and turnover of nitric oxide in a nitrogen-impacted sand and gravel aquifer. Environ Sci Technol 42, 8245–8251.CrossRefPubMedGoogle Scholar
  68. Song, B., and Ward, B.B. (2003). Nitrite reductase genes in halobenzoate degrading denitrifying bacteria. FEMS Microbiol Ecol 43, 349–357.CrossRefPubMedGoogle Scholar
  69. Sul, W.J., Kim, I.S., Ekpeghere, K.I., Song, B., Kim, B.S., Kim, H.G., Kim, J.T., and Koh, S.C. (2016). Metagenomic insight of nitrogen metabolism in a tannery wastewater treatment plant bioaugmented with the microbial consortium BM-S-1. J Environ Sci Health Part A 51, 1164–1172.CrossRefGoogle Scholar
  70. Tallec, G., Garnier, J., Billen, G., and Gousailles, M. (2006). Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: effect of oxygenation level. Water Res 40, 2972–2980.CrossRefPubMedGoogle Scholar
  71. Tian, M., Zhao, F., Shen, X., Chu, K., Wang, J., Chen, S., Guo, Y., and Liu, H. (2015). The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using Illumina sequencing. J Environ Sci 35, 181–190.CrossRefGoogle Scholar
  72. Torres, M.J., Simon, J., Rowley, G., Bedmar, E.J., Richardson, D.J., Gates, A.J., and Delgado, M.J. (2016). Nitrous oxide metabolism in nitratereducing bacteria: physiology and regulatory mechanisms. Adv Microb Physiol 68, 353–432.CrossRefPubMedGoogle Scholar
  73. Vymazal, J., and Kröpfelová, L. (2015). Multistage hybrid constructed wetland for enhanced removal of nitrogen. Ecol Eng 84, 202–208.CrossRefGoogle Scholar
  74. Wang, J., and Chu, L. (2016). Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotech Adv 34, 1103–1112.CrossRefGoogle Scholar
  75. Wang, J., Wang, Y., Bai, J., Liu, Z., Song, X., Yan, D., Abiyu, A., Zhao, Z., and Yan, D. (2017a). High efficiency of inorganic nitrogen removal by integrating biofilm-electrode with constructed wetland: autotrophic denitrifying bacteria analysis. Bioresource Tech 227, 7–14.CrossRefGoogle Scholar
  76. Wang, S., Pu, Y., and Wei, C. (2017b). COD and nitrogen removal and microbial communities in a novel waterfall biofilm reactor operated at different COD/TN ratios. J Environ Sci Health Part A 52, 99–105.CrossRefGoogle Scholar
  77. Wang, W., Cao, L., Tan, H., Zhang, R. (2016) Nitrogen removal from synthetic wastewater using single and mixed culture systems of denitrifying fungi, bacteria, and actinobacteria. Appl Microbiol Biotechnol 100, 9699–9707.CrossRefPubMedGoogle Scholar
  78. Wang, X., Hu, M., Xia, Y., Wen, X., and Ding, K. (2012). Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl Environ Microbiol 78, 7042–7047.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wang, Z., Zhang, X.X., Lu, X., Liu, B., Li, Y., Long, C., and Li, A. (2014). Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing. PLoS ONE 9, e113603.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Xing, W., Li, D., Li, J., Hu, Q., and Deng, S. (2016). Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification. Bioresource Tech 211, 240–247.CrossRefGoogle Scholar
  81. Xing, W., Li, J., Cong, Y., Gao, W., Jia, Z., and Li, D. (2017). Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing. Bioresource Tech 229, 134–142.CrossRefGoogle Scholar
  82. Ye, L., and Zhang, T. (2013). Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appl Microbiol Biotechnol 97, 2681–2690.CrossRefPubMedGoogle Scholar
  83. Yu, K., and Zhang, T. (2012). Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS ONE 7, e38183.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zhang, J., Wang, Y., Yu, D., Tong, J., Chen, M., Sui, Q., ChuLu, B., and Wei, Y. (2017). Who contributes more to N2O emission during sludge bio-drying with two different aeration strategies, nitrifiers or denitrifiers? Appl Microbiol Biotechnol 101, 3393–3404.CrossRefPubMedGoogle Scholar
  85. Zhang, Q.L., Liu, Y., Ai, G.M., Miao, L.L., Zheng, H.Y., and Liu, Z.P. (2012). The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresource Tech 108, 35–44.CrossRefGoogle Scholar
  86. Zheng, H.Y., Liu, Y., Gao, X.Y., Ai, G.M., Miao, L.L., and Liu, Z.P. (2012). Characterization of a marine origin aerobic nitrifying-denitrifying bacterium. J Biosci Bioeng 114, 33–37.CrossRefPubMedGoogle Scholar
  87. Zhi, W., and Ji, G. (2014). Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints. Water Res 64, 32–41.CrossRefPubMedGoogle Scholar
  88. Zhao, Z., Song, X., Zhao, Y., Xiao, Y., Wang, Y., Wang, J., and Yan, D. (2017). Effects of iron and calcium carbonate on the variation and cycling of carbon source in integrated wastewater treatments. Bioresource Tech 225, 262–271.CrossRefGoogle Scholar
  89. Zumft, W.G. (1997). Cell biology and molecular basis of denitrification. Microbiology and molecular biology reviews. Microbiol Mol Biol Rev 61, 533–616.PubMedGoogle Scholar
  90. Zumft, W.G., and Körner, H. (1997). Enzyme diversity and mosaic gene organization in denitrification. Antonie van Leeuwenhoek 71, 43–58.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina

Personalised recommendations