Advertisement

Science China Life Sciences

, Volume 61, Issue 7, pp 815–825 | Cite as

Molecular assembly of recombinant chicken type II collagen in the yeast Pichia pastoris

  • Caixia Xi
  • Nan Liu
  • Fei Liang
  • Xiao Zhao
  • Juan Long
  • Fang Yuan
  • Song Yun
  • Yuying Sun
  • Yongzhi XiEmail author
Research Paper

Abstract

Effective treatment of rheumatoid arthritis can be mediated by native chicken type II collagen (nCCII), recombinant peptide containing nCCII tolerogenic epitopes (CTEs), or a therapeutic DNA vaccine encoding the full-length CCOL2A1 cDNA. As recombinant CCII (rCCII) might avoid potential pathogenic virus contamination during nCCII preparation or chromosomal integration and oncogene activation associated with DNA vaccines, here we evaluated the importance of propeptide and telopeptide domains on rCCII triple helix molecular assembly. We constructed pC- and pN-procollagen (without N- or C-propeptides, respectively) as well as CTEs located in the triple helical domain lacking both propeptides and telopeptides, and expressed these in yeast Pichia pastoris host strain GS115 (his4, Mut+) simultaneously with recombinant chicken prolyl-4-hydroxylase α and β subunits. Both pC- and pN-procollagen monomers accumulated inside P. pastoris cells, whereas CTE was assembled into homotrimers with stable conformation and secreted into the supernatants, suggesting that the large molecular weight pC-or pN-procollagens were retained within the endoplasmic reticulum whereas the smaller CTEs proceeded through the secretory pathway. Furthermore, resulting recombinant chicken type II collagen pCα1(II) can induced collagen-induced arthritis (CIA) rat model, which seems to be as effective as the current standard nCCII. Notably, protease digestion assays showed that rCCII could assemble in the absence of C- and N-propeptides or telopeptides. These findings provide new insights into the minimal structural requirements for rCCII expression and folding.

Keywords

recombinant chicken type II collagen molecular assembly propeptides telopeptides hydroxylation yeast Pichia pastoris 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ala-Kokko, L., and Prockop, D.J. (1990). Completion of the intron-exon structure of the gene for human type II procollagen (COL2A1): variations in the nucleotide sequences of the alleles from three chromosomes. Genomics 8, 454–460.CrossRefPubMedGoogle Scholar
  2. Arnold, W.V., Fertala, A., Sieron, A.L., Hattori, H., Mechling, D., Bächinger, H.P., and Prockop, D.J. (1998). Recombinant procollagen II: deletion of D period segments identifies sequences that are required for helix stabilization and generates a temperature-sensitive N-proteinase cleavage site. J Biol Chem 273, 31822–31828.CrossRefPubMedGoogle Scholar
  3. Barnett, M.L., Kremer, J.M., St Clair, E.M., Clegg, D.O., Furst, D., Weisman, M., Fletcher, M.J., ChasanTaber, S., Finger, E., Morales, A., Le, C.H., and Trentham, D.E. (1998). Treatment of rheumatoid arthritis with oral type II collagen. Results of a multicenter, double-blind, placebo- controlled trial. Arthritis Rheum 41, 290–297.PubMedGoogle Scholar
  4. Bornstein, P., and Sage, H. (1980). Structurally distinct collagen types. Annu Rev Biochem 49, 957–1003.CrossRefPubMedGoogle Scholar
  5. Bruckner, P., and Prockop, D.J. (1981). Proteolytic enzymes as probes for the triple-helical conformation of procollagen. Anal Biochem 110, 360–368.CrossRefPubMedGoogle Scholar
  6. Bulleid, N.J., Wilson, R., and Lees, J.F. (1996). Type-III procollagen assembly in semi-intact cells: chain association, nucleation and triple-helix folding do not require formation of inter-chain disulphide bonds but triple-helix nucleation does require hydroxylation. Biochem J 317, 195–202.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Comper, W.D., and Veis, A. (1977). The mechanism of nucleation for in vitro collagen fibril formation. Biopolymers 16, 2113–2131.CrossRefPubMedGoogle Scholar
  8. Du, F., Acland, G.M., and Ray, J. (2000). Cloning and expression of type II collagen mRNA: evaluation as a candidate for canine oculo-skeletal dysplasia. Gene 255, 307–316.CrossRefPubMedGoogle Scholar
  9. Fertala, A., Holmes, D.F., Kadler, K.E., Sieron, A.L., and Prockop, D.J. (1996). Assembly in vitro of thin and thick fibrils of collagen II from recombinant procollagen II. The monomers in the tips of thick fibrils have the opposite orientation from monomers in the growing tips of collagen I fibrils. J Biol Chem 271, 14864–14869.CrossRefPubMedGoogle Scholar
  10. Fertala, A., Sieron, A.L., Hojima, Y., Ganguly, A., and Prockop, D.J. (1994). Self-assembly into fibrils of collagen II by enzymic cleavage of recombinant procollagen II. Lag period, critical concentration, and morphology of fibrils differ from collagen I. J Biol Chem 269, 11584–11589.PubMedGoogle Scholar
  11. Gelman, R.A., Poppke, D.C., and Piez, K.A. (1979). Collagen fibril formation in vitro. The role of the nonhelical terminal regions. J Biol Chem 254, 11741–11745.PubMedGoogle Scholar
  12. Horton, W.A. (1984). In: Practice of Pediatrics, V.C. Kell, ed. (Philadelphia: Harper and Row), pp. 71–15.Google Scholar
  13. Kaadler, K.E. (1995). In: Protein Profile, P., Sheterline, ed. (London: Academic Press, Inc.), pp. 491–619.Google Scholar
  14. Keizer-Gunnink, I., Vuorela, A., Myllyharju, J., Pihlajaniemi, T., Kivirikko, K.I., and Veenhuis, M. (2000). Accumulation of properly folded human type III procollagen molecules in specific intracellular membranous compartments in the yeast Pichia pastoris. Matrix Biol 19, 29–36.CrossRefPubMedGoogle Scholar
  15. Kuznetsova, N., and Leikin, S. (1999). Does the triple helical domain of type I collagen encode molecular recogmition and fiber assemble while telopeptides serve as catalytic domains? J Biol Chem 274, 36083–36088.CrossRefPubMedGoogle Scholar
  16. Lees, J.F., Tasab, M., and Bulleid, N.J. (1997). Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen. EMBO J 16, 908–916.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Long, J., Zhao, X., Yun, S., Zhang, Z., Jin, J., Yu, K., Hao, Y., Dai, D., Ding, L., Tan, L., Liang, F., Liu, N., Yuan, F., Sun, Y., and Xi, Y. (2015). Safety and immunogenicity of a novel therapeutic DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats. Hum Vaccin Immunother 11, 2777–2783.CrossRefGoogle Scholar
  18. Mallon, S. (2008). DNA vaccines: treatment options for autoimmune diseases. Microbiol Mol Gent 4, 99–103.Google Scholar
  19. Malmstrom, V., Michaelsson, E., Burkhardt, H., Mattsson, R., Vuorio, E., and Holmdahl, R. (1996). Systemic versus cartilage-specific expression of a type II collagen-specific T-cell epitope determines the level of tolerance and susceptibility to arthritis. Proc Natl Acad Sci USA 93, 4480–4485.CrossRefPubMedGoogle Scholar
  20. McLaughlin, S.H., and Bulleid, N.J. (1998). Molecular recognition in procollagen chain assembly. Matrix Biol 16, 369–377.CrossRefPubMedGoogle Scholar
  21. McAlinden, A., Smith, T.A., Sandell, L.J., Sandell, L.J., Ficheux, D., Parry, D.A.D., and Hulmes, D.J.S. (2003). Alpha-helical coiled-coil oligomerization domains are almost ubiquitous in the collagen superfamily. J Biol Chem 278, 42200–42207.CrossRefPubMedGoogle Scholar
  22. Myllyharju, J., Nokelainen, M., Vuorela, A., and Kivirikko, K.I. (2000). Expression of recombinant human type I–III collagens in the yeast pichia pastoris. Biochem Soc Trans 28, 353–357.PubMedGoogle Scholar
  23. Myers, L.K., Cooper, S.W., Terato, K., Seyer, J.M., Stuart, J.M., and Kang, A.H. (1995). Identification and characterization of a tolerogenic T cell determinant within residues 181–209 of chick type II collagen. Clin Immunol Immunopathol 75, 33–38.CrossRefPubMedGoogle Scholar
  24. Nokelainen, M., Tu, H., Vuorela, A., Notbohm, H., Kivirikko, K.I., and Myllyharju, J. (2001). High-level production of human type I collagen in the yeast Pichia pastoris. Yeast 18, 797–806.CrossRefPubMedGoogle Scholar
  25. Nokelainen, M., Helaakoski, T., Myllyharju, J., Notbohm, H., Pihlajaniemi, T., Fietzek, P.P., and Kivirikko, K.I. (1998). Expression and characterization of recombinant human type II collagens with low and high contents of hydroxylysine and its glycosylated forms. Matrix Biol 16, 329–338.CrossRefPubMedGoogle Scholar
  26. Olsen, D.R., Leigh, S.D., Chang, R., McMullin, H., Ong, W., Tai, E., Chisholm, G., Birk, D.E., Berg, R.A., Hitzeman, R.A., and Toman, P.D. (2001). Production of human type I collagen in yeast reveals unexpected new insights into the molecular assembly of collagen trimers. J Biol Chem 276, 24038–24043.CrossRefPubMedGoogle Scholar
  27. Pace, J.M., Kuslich, C.D., Willing, M.C., and Byers, P.H. (2001). Disruption of one intra-chain disulphide bond in the carboxyl-terminal propeptide of the proalpha1(I) chain of type I procollagen permits slow assembly and secretion of overmodified, but stable procollagen trimers and results in mild osteogenesis imperfecta. J Med Genet 38, 443–449.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pakkanen, O., Hamaanen, E.R., Kivirikko, K.I., and Myllyhaarju, J. (2003). Assembly of stable human type I and III collagen molecules from hydroxylated recombinant chains in the yeast Pichia pastoris. Effect of an engineered C-terminal oligomerization domain foldon. J Biol Chem 278, 32478–32483.CrossRefPubMedGoogle Scholar
  29. Prockop, D.J., and Kivirikko, K.I. (1995). Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64, 403–434.CrossRefPubMedGoogle Scholar
  30. Prockop, D.J., and Fertala, A. (1998). Inhibition of the self-assembly of collagen I into fibrils with synthetic peptides. Demonstration that assembly is driven by specific binding sites on the monomers. J Biol Chem 273, 15598–15604.CrossRefPubMedGoogle Scholar
  31. Snellman, A., Keränen, M.R., Hägg, P.O., Lamberg, A., Hiltunen, J.K., Kivirikko, K.I., and Pihlajaniemi, T. (2000). Type XIII collagen forms homotrimers with three triple helical collagenous domains and its association into disulfide-bonded trimers is enhanced by prolyl 4-hydroxylase. J Biol Chem 275, 8936–8944.CrossRefPubMedGoogle Scholar
  32. Song, X., Liang, F., Liu, N., Luo, Y., Xue, H., Yuan, F., Tan, L., Sun, Y., Xi, C., and Xi, Y. (2009). Construction and characterization of a novel DNA vaccine that is potent antigen-specific tolerizing therapy for experimental arthritis by increasing CD4+CD25+Treg cells and inducing Th1 to Th2 shift in both cells and cytokines. Vaccine 27, 690–700.CrossRefPubMedGoogle Scholar
  33. Su, M.W., Lee, B., Ramirez, F., Machado, M., and Horton, W. (1989). Nucleotide sequence of the full length cDNA encoding for human type II procollagen. Nucl Acids Res 17, 9473–9473.CrossRefPubMedGoogle Scholar
  34. Toman, P.D., Chisholm, G., McMullin, H., Giere, L.M., Olsen, D.R., Kovach, R.J., Leigh, S.D., Fong, B.E., Chang, R., Daniels, G.A., Berg, R. A., and Hitzeman, R.A. (2000). Production of recombinant human type I procollagen trimers using a four-gene expression system in the yeast Saccharomyces cerevisiae. J Biol Chem 275, 23303–23309.CrossRefPubMedGoogle Scholar
  35. Trentham, D.E., Dynesius-Trentham, R.A., Orav, E.J., Combitchi, D., Lorenzo, C., Sewell, K.L., Hafler, D.A., and Weiner, H.L. (1993). Effects of oral administration of type II collagen on rheumatoid arthritis. Science 261, 1727–1730.CrossRefPubMedGoogle Scholar
  36. Vuorela, A., Myllyharju, J., Pihlajaniemi, T., and Kivirikko, K.I. (1999). Coexpression with collagen markedly increases the half-life of the recombinant human prolyl 4-hydroxylase tetramer in the yeast Pichia pastoris. Matrix Biol 18, 519–522.CrossRefPubMedGoogle Scholar
  37. Vuorela, A., Myllyharju, J., Nissi, R., Pihlajaniemi, T., and Kivirikko, K.I. (1997). Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast Pichia pastoris: formation of a stable enzyme tetramer requires coexpression with collagen and assembly of a stable collagen requires coexpression with prolyl 4-hydroxylase. EMBO J 16, 6702–6712.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wei, W., Zhang, L.L., Xu, J.H., Xiao, F., Bao, C.D., Ni, L.Q., Li, X.F., Wu, Y.Q., Sun, L.Y., Zhang, R.H., Sun, B.L., Xu, S.Q., Liu, S., Zhang, W., Shen, J., Liu, H.X., and Wang, R.C. (2009). A multicenter, doubleblind, randomized, controlled phase III clinical trial of chicken type II collagen in rheumatoid arthritis. Arthritis Res Ther 11, R180.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Xi, C., Tan, L., Sun, Y., Liang, F., Liu, N., Xue, H., Luo, Y., Yuan, F., Sun, Y., and Xi, Y. (2009). A novel recombinant peptide containing only two T-cell tolerance epitopes of chicken type II collagen that suppresses collagen-induced arthritis. Mol Immunol 46, 729–737.CrossRefPubMedGoogle Scholar
  40. Xi, C., Liu, N., Liang, F., Guo, S., Sun, Y., Yang, F., and Xi, Y. (2006). Molecular cloning, characterization and localization of chicken type II procollagen gene. Gene 366, 67–76.CrossRefPubMedGoogle Scholar
  41. Zhang, L.L., Wei, W., Xiao, F., Xu, J.H., Bao, C.D., Ni, L.Q., and Li, X.F. (2008). A randomized, double-blind, multicenter, controlled clinical trial of chicken type II collagen in patients with rheumatoid arthritis. Arthritis Rheum 59, 905–910.CrossRefPubMedGoogle Scholar
  42. Zhao, X., Long, J., Yun, S., Zhang, Z., Jin, J., Yu, K., Hao, Y., Dai, D., Ding, L., Tan, L., Liang, F., Liu, N., Fang, Y., Sun, Y., and Xi, Y. (2015). Evaluation of humoral and cellular immune responses to a DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats. Hum Vaccin Immunother 11, 938–945.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Caixia Xi
    • 1
  • Nan Liu
    • 1
  • Fei Liang
    • 1
  • Xiao Zhao
    • 1
  • Juan Long
    • 1
  • Fang Yuan
    • 1
  • Song Yun
    • 1
  • Yuying Sun
    • 1
  • Yongzhi Xi
    • 1
    Email author
  1. 1.Department of Immunology and National Center for Biomedicine AnalysisBeijing 307 Hospital Affiliated to Academy of Military Medical SciencesBeijingChina

Personalised recommendations