Science China Life Sciences

, Volume 61, Issue 12, pp 1537–1544 | Cite as

Microbiota transplantation reveals beneficial impact of berberine on hepatotoxicity by improving gut homeostasis

  • Chenjie Qin
  • Huilu Zhang
  • Linghao Zhao
  • Min Zeng
  • Weijian Huang
  • Gongbo Fu
  • Weiping Zhou
  • Hongyang WangEmail author
  • Hexin YanEmail author
Research Paper


Berberine has been shown to reduce acute liver injury although the underlying mechanism is not fully understood. Because of the anatomic connection, the liver is constantly exposed to gut-derived bacterial products and metabolites. In this study, we showed that berberine has beneficial effects on both hepatotoxicity and intestinal damage in a rat model of chronic or acute liver injury. Microbiota transplantation from the rats with chronic hepatotoxicity could aggravate acute hepatotoxicity in mice treated with diethylnitrosamine (DEN). In rat models with gut homeostasis disruption induced by penicillin or dextran sulfate sodium (DSS), their fecal microbiota could also cause an enhanced hepatotoxicity of recipient mice. When treated with berberine, the DSS-induced enteric dysbacteriosis could be mitigated and their fecal bacteria were able to reduce acute hepatotoxicity in recipient mice. This study indicates that berberine could improve intestinal dysbacteriosis, which reduces the hepatotoxicity caused by pathological or pharmacological intervention. Fecal microbiota transplantation might be a useful method to directly explore homeostatic alteration in gut microbiota.


berberine gut homeostasis fecal microbiota transplantation hepatotoxicity 



This work was supported by the projects of the National Key Research Program of China (2016YFC1101402), the National Natural Science Foundation of China (31371440, 31571477) and Program of Shanghai Academic/Technology Research Leader (16XD1403300).


  1. Alolga, R.N., Fan, Y., Chen, Z., Liu, L.W., Zhao, Y.J., Li, J., Chen, Y., Lai, M.D., Li, P., and Qi, L.W. (2016). Significant pharmacokinetic differences of berberine are attributable to variations in gut microbiota between Africans and Chinese. Sci Rep 6, 27671.CrossRefGoogle Scholar
  2. Alpini, G., Lenzi, R., Sarkozi, L., and Tavoloni, N. (1988). Biliary physiology in rats with bile ductular cell hyperplasia. Evidence for a secretory function of proliferated bile ductules. J Clin Investig 81, 569–578.Google Scholar
  3. Bakken, J.S., Borody, T., Brandt, L.J., Brill, J.V., Demarco, D.C., Franzos, M.A., Kelly, C., Khoruts, A., Louie, T., Martinelli, L.P., Moore, T.A., Russell, G., Surawicz, C., and Surawicz, C. (2011). Treating clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol 9, 1044–1049.CrossRefGoogle Scholar
  4. Bernal, W., and Wendon, J. (2013). Acute liver failure. N Engl J Med 369, 2525–2534.CrossRefGoogle Scholar
  5. Betrapally, N.S., Gillevet, P.M., and Bajaj, J.S. (2016). Gut microbiome and liver disease. Transl Res 179, 49–59.CrossRefGoogle Scholar
  6. Bojanova, D.P., and Bordenstein, S.R. (2016). Fecal transplants: what is being transferred? PLoS Biol 14, e1002503.CrossRefGoogle Scholar
  7. Borody, T.J., and Khoruts, A. (2011). Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 9, 88–96.CrossRefGoogle Scholar
  8. Cao, Y., Pan, Q., Cai, W., Shen, F., Chen, G.Y., Xu, L.M., and Fan, J.G. (2016). Modulation of gut microbiota by berberine improves steatohepatitis in high-fat diet-fed BALB/C mice. Arch Iranian Med 19, 197–203.Google Scholar
  9. Caradonna, L., Amati, L., Magrone, T., Pellegrino, N.M., Jirillo, E., and Caccavo, D. (2000). Enteric bacteria, lipopolysaccharides and related cytokines in inflammatory bowel disease: biological and clinical significance. J Endotoxin Res 6, 205–214.Google Scholar
  10. Chen, C., Yu, Z., Li, Y., Fichna, J., and Storr, M. (2014). Effects of berberine in the gastrointestinal tract—A review of actions and therapeutic implications. Am J Chin Med 42, 1053–1070.CrossRefGoogle Scholar
  11. Chen, X., Zhang, Y., Zhu, Z., Liu, H., Guo, H., Xiong, C., Xie, K., Zhang, X., and Su, S. (2016). Protective effect of berberine on doxorubicin-induced acute hepatorenal toxicity in rats. Mol Med Rep 13, 3953–3960.CrossRefGoogle Scholar
  12. Cicero, A.F., and Baggioni, A. (2016). Berberine and its role in chronic disease. Adv Exp Med Biol 928, 27–45.CrossRefGoogle Scholar
  13. Davern, T.J. (2012). Drug-induced liver disease. Clin Liver Dis 16, 231–245.CrossRefGoogle Scholar
  14. De Minicis, S., Rychlicki, C., Agostinelli, L., Saccomanno, S., Candelaresi, C., Trozzi, L., Mingarelli, E., Facinelli, B., Magi, G., Palmieri, C., Marzioni, M., Benedetti, A., and Svegliati-Baroni, G. (2014). Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatology 59, 1738–1749.CrossRefGoogle Scholar
  15. Derosa, G., Maffioli, P., and Cicero, A.F.G. (2012). Berberine on metabolic and cardiovascular risk factors: an analysis from preclinical evidences to clinical trials. Expert Opin Biol Ther 12, 1113–1124.CrossRefGoogle Scholar
  16. Dong, H., Zhao, Y., Zhao, L., and Lu, F. (2013). The effects of berberine on blood lipids: a systemic review and meta-analysis of randomized controlled trials. Planta Med 79, 437–446.CrossRefGoogle Scholar
  17. Francis, H., Franchitto, A., Ueno, Y., Glaser, S., DeMorrow, S., Venter, J., Gaudio, E., Alvaro, D., Fava, G., Marzioni, M., Vaculin, B., and Alpini, G. (2007). H3 histamine receptor agonist inhibits biliary growth of BDL rats by downregulation of the cAMP-dependent PKA/ERK1/2/ELK-1 pathway. Lab Invest 87, 473–487.CrossRefGoogle Scholar
  18. Frazier, T.H., DiBaise, J.K., and McClain, C.J. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. JPEN J Parenter Enteral Nutr 35, 14S–20S.CrossRefGoogle Scholar
  19. Fukui, H. (2015). Gut microbiota and host reaction in liver diseases. Microorganisms 3, 759–791.CrossRefGoogle Scholar
  20. Gaudio, E., Taddei, G., Vetuschi, A., Sferra, R., Frieri, G., Ricciardi, G., and Caprilli, R. (1999). Dextran sulfate sodium (DSS) colitis in rats: clinical, structural, and ultrastructural aspects. Dig Dis Sci 44, 1458–1475.CrossRefGoogle Scholar
  21. Gregory, J.C., Buffa, J.A., Org, E., Wang, Z., Levison, B.S., Zhu, W., Wagner, M.A., Bennett, B.J., Li, L., DiDonato, J.A., Lusis, A.J., and Hazen, S.L. (2015). Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem 290, 5647–5660.CrossRefGoogle Scholar
  22. Gu, Y., Zhang, Y., Shi, X., Li, X., Hong, J., Chen, J., Gu, W., Lu, X., Xu, G., and Ning, G. (2010). Effect of traditional Chinese medicine berberine on type 2 diabetes based on comprehensive metabonomics. Talanta 81, 766–772.CrossRefGoogle Scholar
  23. Gupta, S., Allen-Vercoe, E., and Petrof, E.O. (2016). Fecal microbiota transplantation: in perspective. Therapeutic Adv Gastroenterol 9, 229–239.CrossRefGoogle Scholar
  24. Habtemariam, S. (2016). Berberine and inflammatory bowel disease: a concise review. Pharmacol Res 113, 592–599.CrossRefGoogle Scholar
  25. Han, J., Lin, H., and Huang, W. (2011). Modulating gut microbiota as an antidiabetic mechanism of berberine. Med Sci Monit 17, RA164–RA167.CrossRefGoogle Scholar
  26. He, Q., Mei, D., Sha, S., Fan, S., Wang, L., and Dong, M. (2016). ERKdependent mTOR pathway is involved in berberine-induced autophagy in hepatic steatosis. J Mol Endocrinol 59, X1–X1.CrossRefGoogle Scholar
  27. Hwang, J.M., Wang, C.J., Chou, F.P., Tseng, T.H., Hsieh, Y.S., Lin, W.L., and Chu, C.Y. (2002). Inhibitory effect of berberine on tert-butyl hydroperoxide- induced oxidative damage in rat liver. Arch Toxicol 76, 664–670.CrossRefGoogle Scholar
  28. Imenshahidi, M., and Hosseinzadeh, H. (2016). Berberis Vulgaris and Berberine: an update review. Phytother Res 30, 1745–1764.CrossRefGoogle Scholar
  29. Jayashree, B., Bibin, Y.S., Prabhu, D., Shanthirani, C.S., Gokulakrishnan, K., Lakshmi, B.S., Mohan, V., and Balasubramanyam, M. (2014). Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol Cell Biochem 388, 203–210.CrossRefGoogle Scholar
  30. Ji, H.F., and Shen, L. (2011). Berberine: a potential multipotent natural product to combat Alzheimer’s disease. Molecules 16, 6732–6740.CrossRefGoogle Scholar
  31. Khin Maung, U., Myo, K., Nyunt Nyunt, W., Aye, K., and Tin, U. (1985). Clinical trial of berberine in acute watery diarrhoea. Br Med J 291, 1601–1605.CrossRefGoogle Scholar
  32. Kong, W., Wei, J., Abidi, P., Lin, M., Inaba, S., Li, C., Wang, Y., Wang, Z., Si, S., Pan, H., Wang, S., Wu, J., Wang, Y., Li, Z., Liu, J., and Jiang, J.D. (2004). Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 10, 1344–1351.CrossRefGoogle Scholar
  33. Mekawi, M. (1966). Effect of berberine alkaloid on cholera Vibro and its endotoxin. J Egypt Med Assoc 49, 554–559.Google Scholar
  34. Mo, C., Wang, L., Zhang, J., Numazawa, S., Tang, H., Tang, X., Han, X., Li, J., Yang, M., Wang, Z., Wei, D., and Xiao, H. (2014). The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin- shocked mice. Antioxid Redox Signal 20, 574–588.CrossRefGoogle Scholar
  35. Pang, B., Zhao, L.H., Zhou, Q., Zhao, T.Y., Wang, H., Gu, C.J., and Tong, X.L. (2015). Application of berberine on treating type 2 diabetes mellitus. Int J Endocrinol 2015, 1–12.CrossRefGoogle Scholar
  36. Potdar, D., Hirwani, R.R., and Dhulap, S. (2012). Phyto-chemical and pharmacological applications of Berberis aristata. Fitoterapia 83, 817–830.CrossRefGoogle Scholar
  37. Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., Guo, J., Le Chatelier, E., Yao, J., Wu, L., Zhou, J., Ni, S., Liu, L., Pons, N., Batto, J.M., Kennedy, S.P., Leonard, P., Yuan, C., Ding, W., Chen, Y., Hu, X., Zheng, B., Qian, G., Xu, W., Ehrlich, S.D., Zheng, S., and Li, L. (2014). Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64.CrossRefGoogle Scholar
  38. Quigley, E.M., Stanton, C., and Murphy, E.F. (2013). The gut microbiota and the liver. Pathophysiological and clinical implications. J Hepatol 58, 1020–1027.Google Scholar
  39. Rabbani, G.H., Butler, T., Knight, J., Sanyal, S.C., and Alam, K. (1987). Randomized controlled trial of berberine sulfate therapy for diarrhea due to enterotoxigenic Escherichia coli and Vibrio cholerae. J Infect Dis 155, 979–984.CrossRefGoogle Scholar
  40. Savage, D.C., and Dubos, R. (1968). Alterations in the mouse cecum and its flora produced by antibacterial drugs. J Exp Med 128, 97–110.CrossRefGoogle Scholar
  41. Singh, A., Bajpai, V., Srivastava, M., Arya, K.R., and Kumar, B. (2014). Rapid profiling and structural characterization of bioactive compounds and their distribution in different parts of Berberis petiolaris Wall. ex G. Don applying hyphenated mass spectrometric techniques. Rapid Commun Mass Spectrom 28, 2089–2100.CrossRefGoogle Scholar
  42. Sun, D., Abraham, S.N., and Beachey, E.H. (1988). Influence of berberine sulfate on synthesis and expression of Pap fimbrial adhesin in uropathogenic Escherichia coli. Antimicrob Agents Chemother 32, 1274–1277.CrossRefGoogle Scholar
  43. Tang, L.Q., Ni, W.J., Cai, M., Ding, H.H., Liu, S., and Zhang, S.T. (2016). Renoprotective effects of berberine and its potential effect on the expreßsion of β-arrestins and intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in streptozocin-diabetic nephropathy rats. J Diabetes 8, 693–700.CrossRefGoogle Scholar
  44. Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., and Gordon, J.I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–131.CrossRefGoogle Scholar
  45. Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R., and Gordon, J.I. (2009). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1, 6ra14–6ra14.CrossRefGoogle Scholar
  46. Wyatt, J., Vogelsang, H., Hübl, W., Waldhoer, T., and Lochs, H. (1993). Intestinal permeability and the prediction of relapse in Crohri’s disease. Lancet 341, 1437–1439.CrossRefGoogle Scholar
  47. Yao, J., Kong, W.J., and Jiang, J.D. (2015). Learning from berberine: treating chronic diseases through multiple targets. Sci China Life Sci 58, 854–859.CrossRefGoogle Scholar
  48. Yu, L.X., Yan, H.X., Liu, Q., Yang, W., Wu, H.P., Dong, W., Tang, L., Lin, Y., He, Y.Q., Zou, S.S., Wang, C., Zhang, H.L., Cao, G.W., Wu, M.C., and Wang, H.Y. (2010). Endotoxin accumulation prevents carcinogen- induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology 52, 1322–1333.CrossRefGoogle Scholar
  49. Zhang, H.L., Yu, L.X., Yang, W., Tang, L., Lin, Y., Wu, H., Zhai, B., Tan, Y.X., Shan, L., Liu, Q., Chen, H.Y., Dai, R.Y., Qiu, B.J., He, Y.Q., Wang, C., Zheng, L.Y., Li, Y.Q., Wu, F.Q., Li, Z., Yan, H.X., and Wang, H.Y. (2012a). Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J Hepatol 57, 803–812.CrossRefGoogle Scholar
  50. Zhang, P., Ma, D., Wang, Y., Zhang, M., Qiang, X., Liao, M., Liu, X., Wu, H., and Zhang, Y. (2014a). Berberine protects liver from ethanol-induced oxidative stress and steatosis in mice. Food Chem Toxicol 74, 225–232.CrossRefGoogle Scholar
  51. Zhang, X., Zhao, Y., Zhang, M., Pang, X., Xu, J., Kang, C., Li, M., Zhang, C., Zhang, Z., Zhang, Y., Li, X., Ning, G., and Zhao, L. (2012b). Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS ONE 7, e42529.CrossRefGoogle Scholar
  52. Zhang, Z., Zhang, H., Li, B., Meng, X., Wang, J., Zhang, Y., Yao, S., Ma, Q., Jin, L., Yang, J., Wang, W., and Ning, G. (2014b). Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun 5, 5493.CrossRefGoogle Scholar
  53. Zhao, G., Yu, L., Gao, W., Duan, W., Jiang, B., Liu, X., Zhang, B., Liu, Z., Zhai, M., Jin, Z., Yu, S., and Wang, Y. (2016). Berberine protects rat heart from ischemia/reperfusion injury via activating JAK2/STAT3 signaling and attenuating endoplasmic reticulum stress. Acta Pharmacol Sin 37, 354–367.CrossRefGoogle Scholar
  54. Zhou, J.Y., Zhou, S.W., Zhang, K.B., Tang, J.L., Guang, L.X., Ying, Y., Xu, Y., Zhang, L., and Li, D.D. (2008). Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats. Biol Pharmaceut Bull 31, 1169–1176.CrossRefGoogle Scholar
  55. Zhu, W., Gregory, J.C., Org, E., Buffa, J.A., Gupta, N., Wang, Z., Li, L., Fu, X., Wu, Y., Mehrabian, M., Sartor, R.B., McIntyre, T.M., Silverstein, R.L., Tang, W.H.W., DiDonato, J.A., Brown, J.M., Lusis, A.J., and Hazen, S.L. (2016). Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Chenjie Qin
    • 1
    • 2
  • Huilu Zhang
    • 3
  • Linghao Zhao
    • 1
    • 2
  • Min Zeng
    • 1
    • 2
  • Weijian Huang
    • 1
    • 2
  • Gongbo Fu
    • 1
    • 2
  • Weiping Zhou
    • 1
    • 2
  • Hongyang Wang
    • 1
    • 2
    Email author
  • Hexin Yan
    • 1
    • 2
    Email author
  1. 1.International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institutethe Second Military Medical UniversityShanghaiChina
  2. 2.National Center for Liver Cancer ResearchShanghaiChina
  3. 3.Department of Digestive Diseases, Huashan HospitalFudan UniversityShanghaiChina

Personalised recommendations