Advertisement

Science China Life Sciences

, Volume 61, Issue 8, pp 902–911 | Cite as

Rapid reconstitution of NK1 cells after allogeneic transplantation is associated with a reduced incidence of graft-versus-host disease

  • Xingxing Yu
  • Lingling Xu
  • Yingjun Chang
  • Xiaojun Huang
  • Xiangyu Zhao
Research Paper

Abstract

The balance between immunostimulation and immunoregulation in T cell immunity is achieved by maintaining specific ratios of Th1, Th2, Th3 and Tr1 cells. Here, we investigate levels of type 1 (IFN-gamma; NK1), type 2 (IL-13; NK2), type 3 (TGF-beta; NK3) and regulatory (IL-10; NKr) cytokines in peripheral blood to assess the cytokine profiles of natural killer (NK) cells following human allogeneic hematopoietic stem cell transplantation (allo-HSCT). NK2 and NK3 cell expansion was observed after allo-HSCT; levels of NKr cells reached donor levels at day 15, though levels of NK1 cells were consistently lower than donor levels until day 60 after allo-HSCT. Multivariate analysis showed that a higher level of NK1 cells by day 15 was associated with a lower overall risk of acute graft-versus-host disease (GVHD) (HR 0.157, P=0.010) as well as II-IV acute GVHD (HR 0.260, P=0.059). Furthermore, higher levels of NK1 cells by day 15 were correlated with lower rates of cytomegalovirus (CMV) reactivation (HR 0.040, 0.005–0.348, P=0.003). These results indicate that rapid reconstitution of NK cells, especially NK1 cells, can help prevent the development of GVHD as well as CMV reactivation after allogeneic transplantation.

Keywords

NK1 NK2 NK3 NKr GVHD CMV 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank the members of the core facilities at the Peking University Institute of Hematology for sample collection. This work was supported by the National Natural Science Foundation of China (81270644, 81670166, 81230013, 81530046), the Beijing Talents fund (2015000021223ZK26), the Major State Basic Research Development Program of China (2013CB733700) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (81621001). The study was also partially supported by the Collaborative Innovation Center of Hematology, China.

References

  1. Asai, O., Longo, D.L., Tian, Z.G., Hornung, R.L., Taub, D.D., Ruscetti, F. W., and Murphy, W.J. (1998). Suppression of graft-versus-host disease and amplification of graft-versus-tumor effects by activated natural killer cells after allogeneic bone marrow transplantation. J Clin Invest 101, 1835–1842.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barnig, C., Cernadas, M., Dutile, S., Liu, X., Perrella, M.A., Kazani, S., Wechsler, M.E., Israel, E., and Levy, B.D. (2013). Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci Transl Med 5, 174ra26.CrossRefGoogle Scholar
  3. Bunting, M.D., Varelias, A., Souza-Fonseca-Guimaraes, F., Schuster, I.S., Lineburg, K.E., Kuns, R.D., Fleming, P., Locke, K.R., Huntington, N. D., Blazar, B.R., Lane, S.W., Tey, S.K., MacDonald, K.P.A., Smyth, M. J., Degli-Esposti, M.A., and Hill, G.R. (2017). GVHD prevents NK-cell-dependent leukemia and virus-specific innate immunity. Blood 129, 630–642.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Carson, W.E., Lindemann, M.J., Baiocchi, R., Linett, M., Tan, J.C., Chou, C.C., Narula, S., and Caligiuri, M.A. (1995). The functional characterization of interleukin-10 receptor expression on human natural killer cells. Blood 85, 3577–3585.PubMedGoogle Scholar
  5. Chang, Y.J., Zhao, X.Y., Huo, M.R., and Huang, X.J. (2009). Expression profiles of adhesion molecules on naïve T cells in bone marrow grafts of healthy donors treated with granulocyte colony-stimulating factor. Transplant Immunol 21, 228–233.CrossRefGoogle Scholar
  6. Chen, S.H., Li, X., and Huang, X.J. (2004). Effect of recombinant human granulocyte colony-stimulating factor on T-lymphocyte function and the mechanism of this effect. Int J Hematol 79, 178–184.CrossRefPubMedGoogle Scholar
  7. Cooper, M.A., Fehniger, T.A., Turner, S.C., Chen, K.S., Ghaheri, B.A., Ghayur, T., Carson, W.E., and Caligiuri, M.A. (2001). Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood 97, 3146–3151.CrossRefPubMedGoogle Scholar
  8. Deniz, G., Akdis, M., Aktas, E., Blaser, K., and Akdis, C. (2002). Human NK1 and NK2 subsets determined by purification of IFN-γ-secreting and IFN-γ-nonsecreting NK cells. Eur J Immunol 32, 879–884.CrossRefPubMedGoogle Scholar
  9. Farrell, H.E., Bruce, K., Lawler, C., Cardin, R.D., Davis-Poynter, N.J., and Stevenson, P.G. (2016). Type 1 interferons and NK cells limit murine cytomegalovirus escape from the lymph node subcapsular sinus. PLoS Pathog 12, e1006069.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fehniger, T.A., Cooper, M.A., Nuovo, G.J., Cella, M., Facchetti, F., Colonna, M., and Caligiuri, M.A. (2003). CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 101, 3052–3057.CrossRefPubMedGoogle Scholar
  11. Ferrara, J.L., Levine, J.E., Reddy, P., and Holler, E. (2009). Graft-versus-host disease. Lancet 373, 1550–1561.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Goldszmid, R.S., Caspar, P., Rivollier, A., White, S., Dzutsev, A., Hieny, S., Kelsall, B., Trinchieri, G., and Sher, A. (2012). NK cell-derived interferon-γ orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity 36, 1047–1059.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gray, J.D., Hirokawa, M., Ohtsuka, K., and Horwitz, D.A. (1998). Generation of an inhibitory circuit involving CD8+ T cells, IL-2, and NK cell-derived TGF-beta: contrasting effects of anti-CD2 and anti-CD3. J Immunol 160, 2248–2254.PubMedGoogle Scholar
  14. Hepworth, M.R., and Grencis, R.K. (2009). Disruption of Th2 immunity results in a gender-specific expansion of IL-13 producing accessory NK cells during helminth infection. J Immunol 183, 3906–3914.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Higuma-Myojo, S., Sasaki, Y., Miyazaki, S., Sakai, M., Siozaki, A., Miwa, N., and Saito, S. (2005). Cytokine profile of natural killer cells in early human pregnancy. Am J Reprod Immunol 54, 21–29.CrossRefPubMedGoogle Scholar
  16. Huang, X.J., Liu, D.H., Liu, K.Y., Xu, L.P., Chen, H., Han, W., Chen, Y.H., Wang, J.Z., Gao, Z.Y., Zhang, Y.C., Jiang, Q., Shi, H.X., and Lu, D.P. (2006). Haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of hematological malignancies. Bone Marrow Transplant 38, 291–297.CrossRefPubMedGoogle Scholar
  17. Huang, X.J., Liu, D.H., Liu, K.Y., Xu, L.P., Chen, Y.H., Wang, Y., Han, W., and Chen, H. (2008a). Modified donor lymphocyte infusion after HLAmismatched/ haploidentical T cell-replete hematopoietic stem cell transplantation for prophylaxis of relapse of leukemia in patients with advanced leukemia. J Clin Immunol 28, 276–283.CrossRefPubMedGoogle Scholar
  18. Huang, X.J., Wang, Y., Liu, D.H., Xu, L.P., Chen, H., Chen, Y.H., Han, W., Shi, H.X., and Liu, K.Y. (2008b). Modified donor lymphocyte infusion (DLI) for the prophylaxis of leukemia relapse after hematopoietic stem cell transplantation in patients with advanced leukemia—feasibility and safety study. J Clin Immunol 28, 390–397.CrossRefPubMedGoogle Scholar
  19. Jiang, Q., Xu, L.P., Liu, D.H., Liu, K.Y., Chen, S.S., Jiang, B., Jiang, H., Chen, H., Chen, Y.H., Han, W., Zhang, X.H., Wang, Y., Qin, Y.Z., Liu, Y.R., Lai, Y.Y., and Huang, X.J. (2011). Imatinib mesylate versus allogeneic hematopoietic stem cell transplantation for patients with chronic myelogenous leukemia in the accelerated phase. Blood 117, 3032–3040.CrossRefPubMedGoogle Scholar
  20. Juelke, K., Killig, M., Luetke-Eversloh, M., Parente, E., Gruen, J., Morandi, B., Ferlazzo, G., Thiel, A., Schmitt-Knosalla, I., and Romagnani, C. (2010). CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood 116, 1299–1307.CrossRefPubMedGoogle Scholar
  21. Jun, H.X., Jun, C.Y., and Yu, Z.X. (2004). In vivo induction of T-cell hyporesponsiveness and alteration of immunological cells of bone marrow grafts using granulocyte colony-stimulating factor. Haematologica 89, 1517–1524.PubMedGoogle Scholar
  22. Jun, H.X., Jun, C.Y., and Yu, Z.X. (2005). A direct comparison of immunological characteristics of granulocyte colony-stimulating factor (G-CSF)-primed bone marrow grafts and G-CSF-mobilized peripheral blood grafts. Haematologica 90, 715–716.PubMedGoogle Scholar
  23. Kimura, M.Y., and Nakayama, T. (2005). Differentiation of NK1 and NK2 cells. Crit Rev Immunol 25, 361–374.CrossRefPubMedGoogle Scholar
  24. Loza, M.J., Zamai, L., Azzoni, L., Rosati, E., and Perussia, B. (2002). Expression of type 1 (interferon gamma) and type 2 (interleukin-13, interleukin-5) cytokines at distinct stages of natural killer cell differentiation from progenitor cells. Blood 99, 1273–1281.CrossRefPubMedGoogle Scholar
  25. Lu, D.P., Dong, L., Wu, T., Huang, X.J., Zhang, M.J., Han, W., Chen, H., Liu, D.H., Gao, Z.Y., Chen, Y.H., Xu, L.P., Zhang, Y.C., Ren, H.Y., Li, D., and Liu, K.Y. (2006). Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood 107, 3065–3073.CrossRefPubMedGoogle Scholar
  26. Lu, Y., Giver, C.R., Sharma, A., Li, J.M., Darlak, K.A., Owens, L.M., Roback, J.D., Galipeau, J., and Waller, E.K. (2012). IFN-γ and indoleamine 2,3-dioxygenase signaling between donor dendritic cells and T cells regulates graft versus host and graft versus leukemia activity. Blood 119, 1075–1085.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mehrotra, P.T., Donnelly, R.P., Wong, S., Kanegane, H., Geremew, A., Mostowski, H.S., Furuke, K., Siegel, J.P., and Bloom, E.T. (1998). Production of IL-10 by human natural killer cells stimulated with IL-2 and/or IL-12. J Immunol 160, 2637–2644.PubMedGoogle Scholar
  28. Moretta, L., Ferlazzo, G., Bottino, C., Vitale, M., Pende, D., Mingari, M.C., and Moretta, A. (2006). Effector and regulatory events during natural killer-dendritic cell interactions. Immunol Rev 214, 219–228.CrossRefPubMedGoogle Scholar
  29. Mosmann, T.R., and Sad, S. (1996). The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17, 138–146.CrossRefPubMedGoogle Scholar
  30. Olson, J.A., Leveson-Gower, D.B., Gill, S., Baker, J., Beilhack, A., and Negrin, R.S. (2010). NK cells mediate reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT effects. Blood 115, 4293–4301.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Peritt, D., Robertson, S., Gri, G., Showe, L., Aste-Amezaga, M., and Trinchieri, G. (1998). Differentiation of human NK cells into NK1 and NK2 subsets. J Immunol 161, 5821–5824.PubMedGoogle Scholar
  32. Ponzetta, A., Sciumè, G., Benigni, G., Antonangeli, F., Morrone, S., Santoni, A., and Bernardini, G. (2013). CX3CR1 regulates the maintenance of KLRG1+ NK cells into the bone marrow by promoting their entry into circulation. J Immunol 191, 5684–5694.CrossRefPubMedGoogle Scholar
  33. Rivas, M.N., Hazzan, M., Weatherly, K., Gaudray, F., Salmon, I., and Braun, M.Y. (2010). NK cell regulation of CD4 T cell-mediated graftversus- host disease. J Immunol 184, 6790–6798.CrossRefGoogle Scholar
  34. Ruggeri, L., Capanni, M., Urbani, E., Perruccio, K., Shlomchik, W.D., Tosti, A., Posati, S., Rogaia, D., Frassoni, F., Aversa, F., Martelli, M.F., and Velardi, A. (2002). Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100.CrossRefPubMedGoogle Scholar
  35. Shulman, H.M., Sullivan, K.M., Weiden, P.L., McDonald, G.B., Striker, G. E., Sale, G.E., Hackman, R., Tsoi, M.S., Storb, R., and Thomas, E.D. (1980). Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med 69, 204–217.PubMedGoogle Scholar
  36. Souza-Fonseca-Guimaraes, F., Cavaillon, J.M., and Adib-Conquy, M. (2013). Bench-to-bedside review: natural killer cells in sepsis-guilty or not guilty? Crit Care 17, 235.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ullrich, E., Salzmann-Manrique, E., Bakhtiar, S., Bremm, M., Gerstner, S., Herrmann, E., Bader, P., Hoffmann, P., Holler, E., Edinger, M., and Wolff, D. (2016). Relation between acute GVHD and NK cell subset reconstitution following allogeneic stem cell transplantation. Front Immunol 7, 595.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Yan, C.H., Liu, D.H., Liu, K.Y., Xu, L.P., Liu, Y.R., Chen, H., Han, W., Wang, Y., Qin, Y.Z., and Huang, X.J. (2012). Risk stratification-directed donor lymphocyte infusion could reduce relapse of standard-risk acute leukemia patients after allogeneic hematopoietic stem cell transplantation. Blood 119, 3256–3262.CrossRefPubMedGoogle Scholar
  39. Zhao, X.Y., Xu, L.L., Lu, S.Y., and Huang, X.J. (2011). IL-17-producing T cells contribute to acute graft-versus-host disease in patients undergoing unmanipulated blood and marrow transplantation. Eur J Immunol 41, 514–526.CrossRefPubMedGoogle Scholar
  40. Zhao, X.Y., Lv, M., Xu, L.L., Qian, X., and Huang, X.J. (2013). Donor Th17 cells and IL-21 may contribute to the development of chronic graft-versus-host disease after allogeneic transplantation. Eur J Immunol 43, 838–850.CrossRefPubMedGoogle Scholar
  41. Zhao, X., Gao, F., Zhang, X., Wang, Y., Xu, L., Liu, K., Zhao, X., Chang, Y., Wei, H., Chen, H., Chen, Y., Jiang, Z., and Huang, X. (2016a). Improved clinical outcomes of rhG-CSF-mobilized blood and marrow haploidentical transplantation compared to propensity score-matched rhG-CSF-primed peripheral blood stem cell haploidentical transplantation: a multicenter study. Sci China Life Sci 59, 1139–1148.CrossRefPubMedGoogle Scholar
  42. Zhao, X.Y., Zhao, X.S., Wang, Y.T., Chen, Y.H., Xu, L.P., Zhang, X.H., Han, W., Chen, H., Wang, Y., Yan, C.H., Wang, F.R., Wang, J.Z., Liu, K.Y., Chang, Y.J., and Huang, X.J. (2016b). Prophylactic use of low-dose interleukin-2 and the clinical outcomes of hematopoietic stem cell transplantation: a randomized study. Oncoimmunology 5, e1250992.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xingxing Yu
    • 1
    • 2
  • Lingling Xu
    • 1
    • 3
  • Yingjun Chang
    • 1
  • Xiaojun Huang
    • 1
    • 2
  • Xiangyu Zhao
    • 1
  1. 1.Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationBeijingChina
  2. 2.Peking-Tsinghua Center for Life SciencesBeijingChina
  3. 3.Yantai YuHuangDing HospitalYantaiChina

Personalised recommendations