Advertisement

Science China Life Sciences

, Volume 61, Issue 7, pp 836–843 | Cite as

The S190R mutation in the hemagglutinin protein of pandemic H1N1 2009 influenza virus increased its pathogenicity in mice

  • Yongkun Chen
  • Tian Bai
  • Wenfei Zhu
  • Rongbao Gao
  • Zhihong Deng
  • Yi Shi
  • Shumei Zou
  • Yiwei Huang
  • Xiyan Li
  • Fangcai Li
  • Zhaomin Feng
  • Tao Chen
  • Jing Yang
  • Dayan Wang
  • Lidong Gao
  • Yuelong Shu
Research Paper

Abstract

Human influenza viruses preferentially bind to sialic acid-α2,6-galactose (SAα2,6Gal) receptors, which are predominant in human upper respiratory epithelia, whereas avian influenza viruses preferentially bind to SAα2,3Gal receptors. However, variants with amino acid substitutions around the receptor-binding sites of the hemagglutinin (HA) protein can be selected after several passages of human influenza viruses from patients’ respiratory samples in the allantoic cavities of embryonated chicken eggs. In this study, we detected an egg-adapted HA S190R mutation in the pandemic H1N1 virus 2009 (pdmH1N1), and evaluated the effects of this mutation on receptor binding affinity and pathogenicity in mice. Our results revealed that residue 190 is located within the pocket structure of the receptor binding site. The single mutation to arginine at position 190 slightly increased the binding affinity of the virus to the avian receptor and decreased its binding to the long human α2,6-linked sialic acid receptor. Our study demonstrated that the S190R mutation resulted in earlier death and higher weight loss in mice compared with the wild-type virus. Higher viral titers at 1 dpi (days post infection) and diffuse damage at 4 dpi were observed in the lung tissues of mice infected with the mutant virus.

Keywords

pandemic H1N1 2009 influenza virus egg adaptation HA mutation receptor binding domain pathogenicity mice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFC1200201 to Yuelong Shu), the National Mega-projects for Infectious Diseases (2014ZX10004002-002 to Yuelong Shu) and the young scientist fund of Chinese Center for Disease Control and Prevention (2016A103 to Wenfei Zhu).

References

  1. Abed, Y., Pizzorno, A., Hamelin, M.E., Leung, A., Joubert, P., Couture, C., Kobasa, D., and Boivin, G. (2011). The 2009 pandemic H1N1 D222G hemagglutinin mutation alters receptor specificity and increases virulence in mice but not in ferrets. J Infect Dis 204, 1008–1016.CrossRefPubMedGoogle Scholar
  2. Belser, J.A., Jayaraman, A., Raman, R., Pappas, C., Zeng, H., Cox, N.J., Katz, J.M., Sasisekharan, R., and Tumpey, T.M. (2011). Effect of D222G mutation in the hemagglutinin protein on receptor binding, pathogenesis and transmissibility of the 2009 pandemic H1N1 influenza virus. PLoS ONE 6, e25091.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Centers for Disease, C., Prevention, 2009. (2009). Swine influenza A (H1N1) infection in two children—Southern California, March-April 2009. MMWR Morb Mortal Wkly Rep 58, 400–402.Google Scholar
  4. Chandrasekaran, A., Srinivasan, A., Raman, R., Viswanathan, K., Raguram, S., Tumpey, T.M., Sasisekharan, V., and Sasisekharan, R. (2008). Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat Biotechnol 26, 107–113.CrossRefPubMedGoogle Scholar
  5. Chen, H., Wen, X., To, K.K.W., Wang, P., Tse, H., Chan, J.F.W., Tsoi, H.W., Fung, K.S.C., Tse, C.W.S., Lee, R.A., Chan, K.H., and Yuen, K.Y. (2010). Quasispecies of the D225G substitution in the hemagglutinin of pandemic influenza A(H1N1) 2009 virus from patients with severe disease in Hong Kong, China. J Infect Dis 201, 1517–1521.CrossRefPubMedGoogle Scholar
  6. Childs, R.A., Palma, A.S., Wharton, S., Matrosovich, T., Liu, Y., Chai, W., Campanero-Rhodes, M.A., Zhang, Y., Eickmann, M., Kiso, M., Hay, A., Matrosovich, M., and Feizi, T. (2009). Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nat Biotechnol 27, 797–799.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gambaryan, A.S., Robertson, J.S., and Matrosovich, M.N. (1999). Effects of egg-adaptation on the receptor-binding properties of human influenza A and B viruses. Virology 258, 232–239.CrossRefPubMedGoogle Scholar
  8. Gao, R., Wang, D., Wen, L., Li, X., Wang, W., Zhao, X., Zeng, Y., Xin, L., Lan, Y., Zhang, Y., and Shu, Y. (2011). Development of the realtime RT-PCR detection system for determination of pandemic influenza A (H1N1) virus. Acta Virol 55, 85–87.CrossRefPubMedGoogle Scholar
  9. Herrler, G., Hausmann, J., and Klenk, H.D. (1995). Sialic acid as receptor determinant of ortho- and paramyxoviruses. In: Biology of the Sialic Acids, A., Rosenberg, ed. (Mishawaka: Plenum Press), pp. 315–336.CrossRefGoogle Scholar
  10. Ibricevic, A., Pekosz, A., Walter, M.J., Newby, C., Battaile, J.T., Brown, E.G., Holtzman, M.J., and Brody, S.L. (2006). Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol 80, 7469–7480.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ito, T., Couceiro, J.N., Kelm, S., Baum, L.G., Krauss, S., Castrucci, M.R., Donatelli, I., Kida, H., Paulson, J.C., Webster, R.G., Kawaoka, Y. (1998). Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72, 7367–7373.PubMedPubMedCentralGoogle Scholar
  12. Ito, T., Suzuki, Y., Takada, A., Kawamoto, A., Otsuki, K., Masuda, H., Yamada, M., Suzuki, T., Kida, H., Kawaoka, Y. (1997). Differences in sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virol 71, 3357–3362.PubMedPubMedCentralGoogle Scholar
  13. Kilander, A., Rykkvin, R., Dudman, S.G., Hungnes, O. (2010). Observed association between the HA1 mutation D222G in the 2009 pandemic influenza A(H1N1) virus and severe clinical outcome, Norway 2009–2010. Euro Surveill 15, 6–8.CrossRefGoogle Scholar
  14. Liu, Y., Han, C., Wang, X., Lin, J., Ma, M., Shu, Y., Zhou, J., Yang, H., Liang, Q., Guo, C., Zhu, J., Wei, H., Zhao, J., Ma, Z., and Pan, J. (2009). Influenza A virus receptors in the respiratory and intestinal tracts of pigeons. Avian Pathol 38, 263–266.CrossRefPubMedGoogle Scholar
  15. Mak, G.C., Au, K.W., Tai, L.S., Chuang, K.C., Cheng, K.C., Shiu, T.C., Lim, W. (2010). Association of D222G substitution in haemagglutinin of 2009 pandemic influenza A (H1N1) with severe disease. Euro Surveill 15, 15–16.Google Scholar
  16. Marcelin, G., Aldridge, J.R., Duan, S., Ghoneim, H.E., Rehg, J., Marjuki, H., Boon, A.C.M., McCullers, J.A., and Webby, R.J. (2011). Fatal outcome of pandemic H1N1 2009 influenza virus infection is associated with immunopathology and impaired lung repair, not enhanced viral burden, in pregnant mice. J Virol 85, 11208–11219.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Matrosovich, M., Tuzikov, A., Bovin, N., Gambaryan, A., Klimov, A., Castrucci, M.R., Donatelli, I., and Kawaoka, Y. (2000). Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol 74, 8502–8512.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Medeiros, R., Naffakh, N., Manuguerra, J.C., and van der Werf, S. (2004). Binding of the hemagglutinin from human or equine influenza H3 viruses to the receptor is altered by substitutions at residue 193. Arch Virol 149, 1663–1671.CrossRefPubMedGoogle Scholar
  19. Nicholls, J.M., Chan, R.W.Y., Russell, R.J., Air, G.M., and Peiris, J.S.M. (2008). Evolving complexities of influenza virus and its receptors. Trends Microbiol 16, 149–157.CrossRefPubMedGoogle Scholar
  20. Otte, A., and Gabriel, G. (2011). 2009 pandemic H1N1 influenza A virus strains display differential pathogenicity in C57BL/6J but not BALB/c mice. Virulence 2, 563–566.CrossRefPubMedGoogle Scholar
  21. Otte, A., Sauter, M., Alleva, L., Baumgarte, S., Klingel, K., and Gabriel, G. (2011). Differential host determinants contribute to the pathogenesis of 2009 pandemic H1N1 and human H5N1 influenza A viruses in experimental mouse models. Am J Pathol 179, 230–239.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Otte, A., Sauter, M., Daxer, M.A., McHardy, A.C., Klingel, K., and Gabriel, G. (2015). Adaptive mutations that occurred during circulation in humans of H1N1 influenza virus in the 2009 pandemic enhance virulence in mice. J Virol 89, 7329–7337.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Perez, D.R., Lim, W., Seiler, J.P., Yi, G., Peiris, M., Shortridge, K.F., and Webster, R.G. (2003). Role of quail in the interspecies transmission of H9 influenza A viruses: molecular changes on HA that correspond to adaptation from ducks to chickens. J Virol 77, 3148–3156.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Reed, L., Muench, H. (1938). A simple method of estimating fifty percent endpoints. Am J Hyg 27, 493–497.Google Scholar
  25. Scholtissek, C., Bürger, H., Kistner, O., and Shortridge, K.F. (1985). The nucleoprotein as a possible major factor in determining host specificity of influenza H3N2 viruses. Virology 147, 287–294.CrossRefPubMedGoogle Scholar
  26. Seyer, R., Hrincius, E.R., Ritzel, D., Abt, M., Mellmann, A., Marjuki, H., Kühn, J., Wolff, T., Ludwig, S., and Ehrhardt, C. (2012). Synergistic adaptive mutations in the hemagglutinin and polymerase acidic protein lead to increased virulence of pandemic 2009 H1N1 influenza A virus in mice. J Infect Dis 205, 262–271.CrossRefPubMedGoogle Scholar
  27. Suptawiwat, O., Jeamtua, W., Boonarkart, C., Kongchanagul, A., Puthawathana, P., Auewarakul, P. (2013). Effects of the Q223R mutation in the hemagglutinin (HA) of egg-adapted pandemic 2009 (H1N1) influenza A virus on virus growth and binding of HA to human- and avian-type cell receptors. Acta Virol 57, 333–338.PubMedGoogle Scholar
  28. Takemae, N., Ruttanapumma, R., Parchariyanon, S., Yoneyama, S., Hayashi, T., Hiramatsu, H., Sriwilaijaroen, N., Uchida, Y., Kondo, S., Yagi, H., Kato, K., Suzuki, Y., and Saito, T. (2010). Alterations in receptor-binding properties of swine influenza viruses of the H1 subtype after isolation in embryonated chicken eggs. J Gener Virol 91, 938–948.CrossRefGoogle Scholar
  29. Verity, E.E., Camuglia, S., Agius, C.T., Ong, C., Shaw, R., Barr, I., Middleton, D., and Rockman, S. (2012). Rapid generation of pandemic influenza virus vaccine candidate strains using synthetic DNA. Influenza Other Respir Viruses 6, 101–109.CrossRefPubMedGoogle Scholar
  30. Walther, T., Karamanska, R., Chan, R.W.Y., Chan, M.C.W., Jia, N., Air, G., Hopton, C., Wong, M.P., Dell, A., Malik Peiris, J.S., Haslam, S.M., and Nicholls, J.M. (2013). Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection. PLoS Pathog 9, e1003223.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Zhou, B., Donnelly, M.E., Scholes, D.T., St. George, K., Hatta, M., Kawaoka, Y., and Wentworth, D.E. (2009). Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and swine origin human influenza A viruses. J Virol 83, 10309–10313.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yongkun Chen
    • 1
    • 2
  • Tian Bai
    • 1
    • 2
  • Wenfei Zhu
    • 1
    • 2
  • Rongbao Gao
    • 1
    • 2
  • Zhihong Deng
    • 3
  • Yi Shi
    • 4
  • Shumei Zou
    • 1
    • 2
  • Yiwei Huang
    • 3
  • Xiyan Li
    • 1
    • 2
  • Fangcai Li
    • 3
  • Zhaomin Feng
    • 1
    • 2
  • Tao Chen
    • 1
    • 2
  • Jing Yang
    • 1
    • 2
  • Dayan Wang
    • 1
    • 2
  • Lidong Gao
    • 3
  • Yuelong Shu
    • 1
    • 2
    • 5
  1. 1.National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious DiseasesChinese Center for Disease Control and PreventionBeijingChina
  2. 2.Key Laboratory for Medical VirologyNational Health and Family Planning CommissionBeijingChina
  3. 3.Hunan Provincial Center for Disease Control and PreventionChangshaChina
  4. 4.CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  5. 5.School of Public Health (Shenzhen)Sun Yat-sen UniversityGuangzhouChina

Personalised recommendations