Role of microbiota on lung homeostasis and diseases

Review

Abstract

The lungs, as a place of gas exchange, are continuously exposed to environmental stimuli, such as allergens, microbes, and pollutants. The development of the culture-independent technique for microbiological analysis, such as 16S rRNA sequencing, has uncovered that the lungs are not sterile and, in fact, colonized by diverse communities of microbiota. The function of intestinal microbiota in modulating mucosal homeostasis and defense has been widely studied; however, the potential function of lung microbiota in regulating immunity and homeostasis has just begun. Increasing evidence indicates the relevance of microbiota to lung homeostasis and disease. In this review, we describe the distribution and composition of microbiota in the respiratory system and discuss the potential function of lung microbiota in both health and acute/chronic lung disease. In addition, we also discuss the recent understanding of the gut-lung axis, because several studies have revealed that the immunological interaction among the gut, the lung, and the microbiota was involved in this issue.

Keywords

lung microbiota homeostasis lung disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alegre, M.L., Mannon, R.B., and Mannon, P.J. (2014). The microbiota, the immune system and the allograft. Am J Transplant 14, 1236–1248.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arrieta, M.C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., Subbarao, P., Mandhane, P., Becker, A., McNagny, K.M., Sears, M.R., Kollmann, T., Kollmann, T., Mohn, W.W., Turvey, S.E., and Finlay, B.B. (2015). Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7, 307ra152–307ra152.CrossRefPubMedGoogle Scholar
  3. Atarashi, K., Tanoue, T., Oshima, K., Suda, W., Nagano, Y., Nishikawa, H., Fukuda, S., Saito, T., Narushima, S., Hase, K., Kim, S., Fritz, J.V., Wilmes, P., Ueha, S., Matsushima, K., Ohno, H., Olle, B., Sakaguchi, S., Taniguchi, T., Morita, H., Hattori, M., and Honda, K. (2013). Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236.CrossRefPubMedGoogle Scholar
  4. Bai, H., Gao, X., Zhao, L., Peng, Y., Yang, J., Qiao, S., Zhao, H., Wang, S., Fan, Y.J., Joyee, A.G., Yao, Z., and Yang, X. (2016). Respective IL-17A production by γδ T and Th17 cells and its implication in host defense against chlamydial lung infection. Cell Mol Immunol in press doi: 10.1038/cmi.2016.53.Google Scholar
  5. Bassis, C.M., Erb-Downward, J.R., Dickson, R.P., Freeman, C.M., Schmidt, T.M., Young, V.B., Beck, J.M., Curtis, J.L., and Huffnagle, G.B. (2015). Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio 6, e00037.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beck, J.M., Young, V.B., and Huffnagle, G.B. (2012). The microbiome of the lung. Transl Res 160, 258–266.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Belkaid, Y., and Tamoutounour, S. (2016). The influence of skin microorganisms on cutaneous immunity. Nat Rev Immunol 16, 353–366.CrossRefPubMedGoogle Scholar
  8. Bird, L. (2012). Gut microbiota influences liver disease. Nat Rev Immunol 12, 153.PubMedGoogle Scholar
  9. Brubaker, L., and Wolfe, A.J. (2017). The female urinary microbiota, urinary health and common urinary disorders. Ann Transl Med 5, 34–34.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Budden, K.F., Gellatly, S.L., Wood, D.L., Cooper, M.A., Morrison, M., Hugenholtz, P., and Hansbro, P.M. (2017). Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol 15, 55–63.CrossRefPubMedGoogle Scholar
  11. Charlson, E.S., Bittinger, K., Haas, A.R., Fitzgerald, A.S., Frank, I., Yadav, A., Bushman, F.D., and Collman, R.G. (2011). Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184, 957–963.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen, L.W., Chen, P.H., and Hsu, C.M. (2011). Commensal microflora contribute to host defense against Escherichia coli pneumonia through Toll-like receptors. Shock 36, 67–75.CrossRefPubMedGoogle Scholar
  13. Chung, H., and Kasper, D.L. (2010). Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr Opin Immunol 22, 455–460.CrossRefPubMedGoogle Scholar
  14. Collard, H.R., Moore, B.B., Flaherty, K.R., Brown, K.K., Kaner, R.J., King, T.E., Lasky, J.A., Loyd, J.E., Noth, I., Olman, M.A., Raghu, G., Roman, J., Ryu, J.H., Zisman, D.A., Hunninghake, G.W., Colby, T.V., Egan, J.J., Hansell, D.M., Johkoh, T., Kaminski, N., Kim, D.S., Kondoh, Y., Lynch, D.A., Müller-Quernheim, J., Myers, J.L., Nicholson, A.G., Selman, M., Toews, G.B., Wells, A.U., Martinez, F.J., and Martinez, F.J. (2007). Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 176, 636–643.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cui, L., Morris, A., Huang, L., Beck, J.M., Twigg, H.L., 3rd, von Mutius, E., and Ghedin, E. (2014). The microbiome and the lung. Ann Am Thorac Soc 11 Suppl 4, S227–S232.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dickson, R.P., Erb-Downward, J.R., Martinez, F.J., and Huffnagle, G.B. (2016). The microbiome and the respiratory tract. Annu Rev Physiol 78, 481–504.CrossRefPubMedGoogle Scholar
  17. Ege, M.J., Mayer, M., Normand, A.C., Genuneit, J., Cookson, W.O.C.M., Braun-Fahrländer, C., Heederik, D., Piarroux, R., von Mutius, E., and von Mutius, E. (2011). Exposure to environmental microorganisms and childhood asthma. N Engl J Med 364, 701–709.CrossRefPubMedGoogle Scholar
  18. Folcik, V.A., Garofalo, M., Coleman, J., Donegan, J.J., Rabbani, E., Suster, S., Nuovo, A., Magro, C.M., Di Leva, G., and Nuovo, G.J. (2014). Idiopathic pulmonary fibrosis is strongly associated with productive infection by herpesvirus saimiri. Mod Pathol 27, 851–862.CrossRefPubMedGoogle Scholar
  19. Gallacher, D.J., and Kotecha, S. (2016). Respiratory microbiome of newborn infants. Front Pediatr 4, 10.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Garcia-Nuñez, M., Millares, L., Pomares, X., Ferrari, R., Pérez-Brocal, V., Gallego, M., Espasa, M., Moya, A., and Monsó, E. (2014). Severity-related changes of bronchial microbiome in chronic obstructive pulmonary disease. J Clin Microbiol 52, 4217–4223.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ghosh, S., Hoselton, S.A., Asbach, S.V., Steffan, B.N., Wanjara, S.B., Dorsam, G.P., and Schuh, J.M. (2015). B lymphocytes regulate airway granulocytic inflammation and cytokine production in a murine model of fungal allergic asthma. Cell Mol Immunol 12, 202–212.CrossRefPubMedGoogle Scholar
  22. Gill, N., Wlodarska, M., and Finlay, B.B. (2010). The future of mucosal immunology: studying an integrated system-wide organ. Nat Immunol 11, 558–560.CrossRefPubMedGoogle Scholar
  23. Glenwright, A.J., Pothula, K.R., Bhamidimarri, S.P., Chorev, D.S., Baslé, A., Firbank, S.J., Zheng, H., Robinson, C.V., Winterhalter, M., Kleinekathöfer, U., Bolam, D.N., and van den Berg, B. (2017). Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature 541, 407–411.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gollwitzer, E.S., Saglani, S., Trompette, A., Yadava, K., Sherburn, R., McCoy, K.D., Nicod, L.P., Lloyd, C.M., and Marsland, B.J. (2014). Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med 20, 642–647.CrossRefPubMedGoogle Scholar
  25. Guillot, L., Medjane, S., Le-Barillec, K., Balloy, V., Danel, C., Chignard, M., and Si-Tahar, M. (2004). Response of human pulmonary epithelial cells to lipopolysaccharide involves Toll-like receptor 4 (TLR4)-dependent signaling pathways. J Biol Chem 279, 2712–2718.CrossRefPubMedGoogle Scholar
  26. Hagner, S., Harb, H., Zhao, M., Stein, K., Holst, O., Ege, M.J., Mayer, M., Matthes, J., Bauer, J., von Mutius, E., Renz, H., Heine, H., Pfefferle, P.I., and Garn, H. (2013). Farm-derived Gram-positive bacterium Staphylococcus sciuri W620 prevents asthma phenotype in HDM- and OVA-exposed mice. Allergy 68, 322–329.CrossRefPubMedGoogle Scholar
  27. Han, M.L.K., Zhou, Y., Murray, S., Tayob, N., Noth, I., Lama, V.N., Moore, B.B., White, E.S., Flaherty, K.R., Huffnagle, G.B., and Martinez, F.J. (2014). Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. Lancet Respir Med 2, 548–556.CrossRefPubMedPubMedCentralGoogle Scholar
  28. He, Y., Wen, Q., Yao, F., Xu, D., Huang, Y., and Wang, J. (2017). Gutlung axis: the microbial contributions and clinical implications. Crit Rev Microbiol 43, 81–95.CrossRefPubMedGoogle Scholar
  29. Hilty, M., Burke, C., Pedro, H., Cardenas, P., Bush, A., Bossley, C., Davies, J., Ervine, A., Poulter, L., Pachter, L., Moffatt, M.F., and Cookson, W.O.C. (2010). Disordered microbial communities in asthmatic airways. PLoS ONE 5, e8578.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Honda, K., and Littman, D.R. (2016). The microbiota in adaptive immune homeostasis and disease. Nature 535, 75–84.CrossRefPubMedGoogle Scholar
  31. Hurley, M.N., Ariff, A.H.A., Bertenshaw, C., Bhatt, J., and Smyth, A.R. (2012). Results of antibiotic susceptibility testing do not influence clinical outcome in children with cystic fibrosis. J Cystic Fibrosis 11, 288–292.CrossRefGoogle Scholar
  32. Ichinohe, T., Pang, I.K., Kumamoto, Y., Peaper, D.R., Ho, J.H., Murray, T.S., and Iwasaki, A. (2011). Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA 108, 5354–5359.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Keely, S., Talley, N.J., and Hansbro, P.M. (2012). Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol 5, 7–18.CrossRefPubMedGoogle Scholar
  34. Kozakova, H., Schwarzer, M., Tuckova, L., Srutkova, D., Czarnowska, E., Rosiak, I., Hudcovic, T., Schabussova, I., Hermanova, P., Zakostelska, Z., Aleksandrzak-Piekarczyk, T., Koryszewska-Baginska, A., Tlaskalova-Hogenova, H., and Cukrowska, B. (2016). Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell Mol Immunol 13, 251–262.CrossRefPubMedGoogle Scholar
  35. Lefrancais, E., Ortiz-Munoz, G., Caudrillier, A., Mallavia, B., Liu, F., Sayah, D.M., Thornton, E.E., Headley, M.B., David, T., Coughlin, S.R., et al. (2017). The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 544, 105–109.CrossRefPubMedGoogle Scholar
  36. Li, M.O., and Flavell, R.A. (2008). TGF-β: a master of all T cell trades. Cell 134, 392–404.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Liu, Y., and Marc Rhoads, J. (2016). “LOCK”ing up allergic responses with a Polish probiotic. Cell Mol Immunol 13, 263–264.CrossRefPubMedGoogle Scholar
  38. Lloyd, C.M., and Hessel, E.M. (2010). Functions of T cells in asthma: more than just TH2 cells. Nat Rev Immunol 10, 838–848.CrossRefPubMedGoogle Scholar
  39. Lochner, M., Bérard, M., Sawa, S., Hauer, S., Gaboriau-Routhiau, V., Fernandez, T.D., Snel, J., Bousso, P., Cerf-Bensussan, N., and Eberl, G. (2011). Restricted microbiota and absence of cognate TCR antigen leads to an unbalanced generation of Th17 cells. J Immunol 186, 1531–1537.CrossRefPubMedGoogle Scholar
  40. Lynch, S.V. (2016). The lung microbiome and airway disease. Ann ATS 13, S462–S465.CrossRefGoogle Scholar
  41. Macfarlane, G., Blackett, K., Nakayama, T., Steed, H., and Macfarlane, S. (2009). The gut microbiota in inflammatory bowel disease. Curr Pharmaceut Design 15, 1528–1536.CrossRefGoogle Scholar
  42. Man, W.H., de Steenhuijsen Piters, W.A.A., and Bogaert, D. (2017). The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Micro 15, 259–270.CrossRefGoogle Scholar
  43. Marri, P.R., Stern, D.A., Wright, A.L., Billheimer, D., and Martinez, F.D. (2013). Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol 131, 346–352.e3.CrossRefPubMedGoogle Scholar
  44. Marsland, B.J., and Gollwitzer, E.S. (2014). Host-microorganism interactions in lung diseases. Nat Rev Immunol 14, 827–835.CrossRefPubMedGoogle Scholar
  45. Matsuoka, K., and Kanai, T. (2015). The gut microbiota and inflammatory bowel disease. Semin Immunopathol 37, 47–55.CrossRefPubMedGoogle Scholar
  46. McDermott, M.R., and Bienenstock, J. (1979). Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol 122, 1892–1898.PubMedGoogle Scholar
  47. Molyneaux, P.L., Cox, M.J., Willis-Owen, S.A.G., Mallia, P., Russell, K.E., Russell, A.M., Murphy, E., Johnston, S.L., Schwartz, D.A., Wells, A.U., Cookson, W.O.C., Maher, T.M., and Moffatt, M.F. (2014). The Role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 190, 906–913.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Morris, A., Beck, J.M., Schloss, P.D., Campbell, T.B., Crothers, K., Curtis, J.L., Flores, S.C., Fontenot, A.P., Ghedin, E., Huang, L., Jablonski, K., Kleerup, E., Lynch, S.V., Sodergren, E., Twigg, H., Young, V.B., Bassis, C.M., Venkataraman, A., Schmidt, T.M., Weinstock, G.M., and Weinstock, G.M. (2013). Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med 187, 1067–1075.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nakanishi, Y., Sato, T., and Ohteki, T. (2015). Commensal Gram-positive bacteria initiates colitis by inducing monocyte/macrophage mobilization. Mucosal Immunol 8, 152–160.CrossRefPubMedGoogle Scholar
  50. Nembrini, C., Sichelstiel, A., Kisielow, J., Kurrer, M., Kopf, M., and Marsland, B.J. (2011). Bacterial-induced protection against allergic inflammation through a multicomponent immunoregulatory mechanism. Thorax 66, 755–763.CrossRefPubMedGoogle Scholar
  51. O’Dwyer, D.N., Armstrong, M.E., Trujillo, G., Cooke, G., Keane, M.P., Fallon, P.G., Simpson, A.J., Millar, A.B., McGrath, E.E., Whyte, M.K., Hirani, N., Hogaboam, C.M., and Donnelly, S.C. (2013). The Toll-like receptor 3 L412F polymorphism and disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 188, 1442–1450.CrossRefPubMedGoogle Scholar
  52. O’Dwyer, D.N., Dickson, R.P., and Moore, B.B. (2016). The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J Immunol 196, 4839–4847.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ramsey, B.W. (1996). Management of pulmonary disease in patients with cystic fibrosis. N Engl J Med 335, 179–188.CrossRefPubMedGoogle Scholar
  54. Remot, A., Descamps, D., Noordine, M.L., Boukadiri, A., Mathieu, E., Robert, V., Riffault, S., Lambrecht, B., Langella, P., Hammad, H., and Thomas, M. (2017). Bacteria isolated from lung modulate asthma susceptibility in mice. ISME J 11, 1061–1074.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rooks, M.G., and Garrett, W.S. (2016). Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16, 341–352.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Round, J.L., and Mazmanian, S.K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9, 313–323.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Saeedi, P., Salimian, J., Ahmadi, A., and Imani Fooladi, A.A. (2015). The transient but not resident (TBNR) microbiome: a Yin Yang model for lung immune system. Inhal Toxicol 27, 451–461.CrossRefPubMedGoogle Scholar
  58. Schleiermacher, D., and Hoffmann, J.C. (2007). Pulmonary abnormalities in inflammatory bowel disease. J Crohn’s Colitis 1, 61–69.CrossRefGoogle Scholar
  59. Segal, L.N., and Blaser, M.J. (2014). A brave new world: the lung microbiota in an era of change. Ann Am Thorac Soc 11 Suppl 1, S21–S27.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Shaw, M.H., Kamada, N., Kim, Y.G., and Núñez, G. (2012). Microbiotainduced IL-1β, but not IL-6, is critical for the development of steady-state Th17 cells in the intestine. J Exp Med 209, 251–258.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Shekhar, S., Peng, Y., Wang, S., and Yang, X. (2017). CD103+ lung dendritic cells (LDCs) induce stronger Th1/Th17 immunity to a bacterial lung infection than CD11bhi LDCs. Cell Mol Immunol in press doi: 10.1038/cmi.2016.68.Google Scholar
  62. Siu, K.L., Chan, C.P., Kok, K.H., Chiu-Yat Woo, P., and Jin, D.Y. (2014). Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol 11, 141–149.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Smith, A.L., Fiel, S.B., Mayer-Hamblett, N., Ramsey, B., and Burns, J.L. (2003). Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration. Chest 123, 1495–1502.CrossRefPubMedGoogle Scholar
  64. Snelgrove, R.J., Godlee, A., and Hussell, T. (2011). Airway immune homeostasis and implications for influenza-induced inflammation. Trends Immunol 32, 328–334.CrossRefPubMedGoogle Scholar
  65. Song, X., He, X., Li, X., and Qian, Y. (2016). The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell Mol Immunol 13, 418–431.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Stenbit, A.E., and Flume, P.A. (2011). Pulmonary exacerbations in cystic fibrosis. Curr Opin Pulm Med 17, 442–447.PubMedGoogle Scholar
  67. Su, C., Lei, L., Duan, Y., Zhang, K.Q., and Yang, J. (2012). Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93, 993–1003.CrossRefPubMedGoogle Scholar
  68. Sze, M.A., Abbasi, M., Hogg, J.C., and Sin, D.D. (2014). A comparison between droplet digital and quantitative PCR in the analysis of bacterial 16S load in lung tissue samples from control and COPD GOLD 2. PLoS ONE 9, e110351.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tamburini, S., and Clemente, J.C. (2017). Gut microbiota: neonatal gut microbiota induces lung immunity against pneumonia. Nat Rev Gastroenterol Hepatol 14, 263–264.CrossRefPubMedGoogle Scholar
  70. Tan, D.B.A., Amran, F.S., Teo, T.H., Price, P., and Moodley, Y.P. (2016). Levels of CMV-reactive antibodies correlate with the induction of CD28null T cells and systemic inflammation in chronic obstructive pulmonary disease (COPD). Cell Mol Immunol 13, 551–553.CrossRefPubMedGoogle Scholar
  71. Tan, D.B.A., Fernandez, S., Price, P., French, M.A., Thompson, P.J., and Moodley, Y.P. (2014). Impaired CTLA-4 responses in COPD are associated with systemic inflammation. Cell Mol Immunol 11, 606–608.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Taylor, S.L., Wesselingh, S., and Rogers, G.B. (2016). Host-microbiome interactions in acute and chronic respiratory infections. Cell Microbiol 18, 652–662.CrossRefPubMedGoogle Scholar
  73. Thepen, T., Kraal, G., and Holt, P.G. (1994). The role of alveolar macrophages in regulation of lung inflammation. Ann New York Acad Sci 725, 200–206.CrossRefGoogle Scholar
  74. Tian, Z., Cao, X., Chen, Y., and Lyu, Q. (2016). Regional immunity in tissue homeostasis and diseases. Sci China Life Sci 59, 1205–1209.CrossRefPubMedGoogle Scholar
  75. Trompette, A., Gollwitzer, E.S., Yadava, K., Sichelstiel, A.K., Sprenger, N., Ngom-Bru, C., Blanchard, C., Junt, T., Nicod, L.P., Harris, N.L., and Marsland, B.J. (2014). Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20, 159–166.CrossRefPubMedGoogle Scholar
  76. Vital, M., Harkema, J.R., Rizzo, M., Tiedje, J., and Brandenberger, C. (2015). Alterations of the murine gut microbiome with age and allergic airway disease. J Immunol Res 2015, 892568.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wang, J., Li, F., Sun, R., Gao, X., Wei, H., Li, L.J., and Tian, Z. (2013). Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages. Nat Commun 4, 2106.PubMedPubMedCentralGoogle Scholar
  78. Wang, J., Li, F., Wei, H., Lian, Z.X., Sun, R., and Tian, Z. (2014). Respiratory influenza virus infection induces intestinal immune injury via microbiota- mediated Th17 cell-dependent inflammation. J Exp Med 211, 2397–2410.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wang, J., and Tian, Z. (2015). How lung infection leads to gut injury. Oncotarget 6, 42394–42395.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wissinger, E., Goulding, J., and Hussell, T. (2009). Immune homeostasis in the respiratory tract and its impact on heterologous infection. Semin Immunol 21, 147–155.CrossRefPubMedGoogle Scholar
  81. Wu, D., Hou, C., Li, Y., Zhao, Z., Liu, J., Lu, X., Shang, X., and Xin, Y. (2014). Analysis of the bacterial community in chronic obstructive pulmonary disease sputum samples by denaturing gradient gel electrophoresis and real-time PCR. BMC Pulm Med 14, 179.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Young, R.P., Hopkins, R.J., and Marsland, B. (2016). The gut-liver-lung axis. Modulation of the innate immune response and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 54, 161–169.CrossRefPubMedGoogle Scholar
  83. Zhang, Y., and Liang, C. (2016). Innate recognition of microbial-derived signals in immunity and inflammation. Sci China Life Sci 59, 1210–1217.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Sciences), School of Life Science and Medical CenterUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Neuroimmunology and MS Research, Neurology ClinicUniversity Hospital Zurich, University ZurichZurichSwitzerland
  3. 3.Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations