Advertisement

Science China Life Sciences

, Volume 60, Issue 11, pp 1191–1196 | Cite as

Gut-liver axis: gut microbiota in shaping hepatic innate immunity

  • Xunyao WuEmail author
  • Zhigang TianEmail author
Review

Abstract

Gut microbiota play an essential role in shaping immune cell responses. The liver was continuously exposed to metabolic products of intestinal commensal bacterial through portal vein and alteration of gut commensal bateria was always associated with increased risk of liver inflammation and autoimmune disease. Considered as a unique immunological organ, the liver is enriched with a large number of innate immune cells. Herein, we summarize the available literature of gut microbiota in shaping the response of hepatic innate immune cells including NKT cells, NK cells, γδ T cells and Kupffer cells during health and disease. Such knowledge might help to develop novel and innovative strategies for the prevention and therapy of innate immune cell-related liver disease.

Keywords

microbiota liver innate immune cells liver inflammation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, D., Oh, S.F., Olszak, T., Neves, J.F., Avci, F.Y., Erturk-Hasdemir, D., Lu, X., Zeissig, S., Blumberg, R.S., and Kasper, D.L. (2014). Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156, 123–133.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bandyopadhyay, K., Marrero, I., and Kumar, V. (2016). NKT cell subsets as key participants in liver physiology and pathology. Cell Mol Immunol 13, 337–346.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Benakis, C., Brea, D., Caballero, S., Faraco, G., Moore, J., Murphy, M., Sita, G., Racchumi, G., Ling, L., Pamer, E.G., Iadecola, C., and Anrather, J. (2016). Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med 22, 516–523.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bi, J., Zhang, Q., Liang, D., Xiong, L., Wei, H., Sun, R., and Tian, Z. (2014a). T-cell Ig and ITIM domain regulates natural killer cell activation in murine acute viral hepatitis. Hepatology 59, 1715–1725.CrossRefPubMedGoogle Scholar
  5. Bi, J., Zheng, X., Chen, Y., Wei, H., Sun, R., and Tian, Z. (2014b). TIGIT safeguards liver regeneration through regulating natural killer cell-hepatocyte crosstalk. Hepatology 60, 1389–1398.CrossRefPubMedGoogle Scholar
  6. Chen, J., Wei, Y., He, J., Cui, G., Zhu, Y., Lu, C., Ding, Y., Xue, R., Bai, L., Uede, T., Li, L., and Diao, H. (2014). Natural killer T cells play a necessary role in modulating of immune-mediated liver injury by gut microbiota. Sci Rep 4, 7259.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cheng, M., Chen, Y., Xiao, W., Sun, R., and Tian, Z. (2013). NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 10, 230–252.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Crispe, I.N. (2009). The liver as a lymphoid organ. Annu Rev Immunol 27, 147–163.CrossRefPubMedGoogle Scholar
  9. Duan, J., Chung, H., Troy, E., and Kasper, D.L. (2010). Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing γ/δ T cells. Cell Host Microbe 7, 140–150.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dupaul-Chicoine, J., Arabzadeh, A., Dagenais, M., Douglas, T., Champagne, C., Morizot, A., Rodrigue-Gervais, I.G., Breton, V., Colpitts, S.L., Beauchemin, N., and Saleh, M. (2015). The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity 43, 751–763.CrossRefPubMedGoogle Scholar
  11. Duseja, A., and Chawla, Y.K. (2014). Obesity and NAFLD: the role of bacteria and microbiota. Clin Liver Dis 18, 59–71.CrossRefPubMedGoogle Scholar
  12. Fay, N.S., Larson, E.C., and Jameson, J.M. (2016). Chronic inflammation and γδ T cells. Front Immunol 7, 210.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fernández-Santoscoy, M., Wenzel, U.A., Yrlid, U., Cardell, S., Bäckhed, F., and Wick, M.J. (2015). The gut microbiota reduces colonization of the mesenteric lymph nodes and IL-12-independent IFN-γ production during Salmonella infection. Front Cell Infect Microbiol 5, 93.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Froelich, C.J., and Bankhurst, A.D. (1983). Natural killing and antibody-dependent cellular cytotoxicity: characterization of effector cells by E-rosetting and monoclonal antibodies. Cell Immunol 78, 33–42.CrossRefPubMedGoogle Scholar
  15. Ganal, S.C., Sanos, S.L., Kallfass, C., Oberle, K., Johner, C., Kirschning, C., Lienenklaus, S., Weiss, S., Staeheli, P., Aichele, P., and Diefenbach, A. (2012). Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37, 171–186.CrossRefPubMedGoogle Scholar
  16. Gao, B., Jeong, W.I., and Tian, Z. (2008). Liver: an organ with predominant innate immunity. Hepatology 47, 729–736.CrossRefPubMedGoogle Scholar
  17. Grakoui, A., and Crispe, I.N. (2016). Presentation of hepatocellular antigens. Cell Mol Immunol 13, 293–300.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hamada, S., Umemura, M., Shiono, T., Tanaka, K., Yahagi, A., Begum, M.D., Oshiro, K., Okamoto, Y., Watanabe, H., Kawakami, K., Roark, C., Born, W.K., O’Brien, R., Ikuta, K., Ishikawa, H., Nakae, S., Iwakura, Y., Ohta, T., and Matsuzaki, G. (2008). IL-17A produced by T cells plays a critical role in innate immunity against Listeria monocytogenes infection in the liver. J Immunol 181, 3456–3463.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W.Z., Strowig, T., Thaiss, C.A., Kau, A.L., Eisenbarth, S.C., Jurczak, M.J., Camporez, J.P., Shulman, G.I., Gordon, J.I., Hoffman, H.M., and Flavell, R.A. (2012). Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 126, 179–185.CrossRefGoogle Scholar
  20. Herberman, R.B., Nunn, M.E., and Lavrin, D.H. (1975). Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 16, 216–229.PubMedGoogle Scholar
  21. Hou, L., Jie, Z., Desai, M., Liang, Y., Soong, L., Wang, T., and Sun, J. (2013). Early IL-17 production by intrahepatic T cells is important for adaptive immune responses in viral hepatitis. J Immunol 190, 621–629.CrossRefPubMedGoogle Scholar
  22. Inokuchi, S., Tsukamoto, H., Park, E.J., Liu, Z.X., Brenner, D.A., and Seki, E. (2011). Toll-like receptor 4 mediates alcohol-induced steatohepatitis through bone marrow-derived and endogenous liver cells in mice. Alcohol Clin Exp Res 20, 1509–1518.Google Scholar
  23. Ismail, A.S., Behrendt, C.L., and Hooper, L.V. (2009). Reciprocal interactions between commensal bacteria and intraepithelial lymphocytes during mucosal injury. J Immunol 182, 3047–3054.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ju, C., and Tacke, F. (2016). Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol 13, 316–327.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Khairallah, C., Déchanet-Merville, J., and Capone, M. (2017). γδ T cellmediated immunity to cytomegalovirus infection. Front Immunol 8, 105.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Leung, C., Rivera, L., Furness, J.B., and Angus, P.W. (2016). The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol 13, 412–425.CrossRefPubMedGoogle Scholar
  27. Li, F., Hao, X., Chen, Y., Bai, L., Gao, X., Lian, Z., Wei, H., Sun, R., and Tian, Z. (2017). The microbiota maintain homeostasis of liver-resident γδT-17 cells in a lipid antigen/CD1d-dependent manner. Nat Commun 7, 13839.CrossRefPubMedGoogle Scholar
  28. Liang, S., Webb, T., and Li, Z. (2014). Probiotic antigens stimulate hepatic natural killer T cells. Immunology 141, 203–210.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lockhart, E., Green, A.M., and Flynn, J.L. (2006). IL-17 production is dominated by T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 177, 4662–4669.CrossRefPubMedGoogle Scholar
  30. Mathews, S., Feng, D., Maricic, I., Ju, C., Kumar, V., and Gao, B. (2016). Invariant natural killer T cells contribute to chronic-plus-binge ethanolmediated liver injury by promoting hepatic neutrophil infiltration. Cell Mol Immunol 13, 206–216.CrossRefPubMedGoogle Scholar
  31. Meng, F., Wang, K., Aoyama, T., Grivennikov, S.I., Paik, Y.H., Scholten, D., Cong, M., Iwaisako, K., Liu, X., Zhang, M., Österreicher, C.H., Stickel, F., Ley, K., Brenner, D.A., and Kisseleva, T. (2012). Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143, 765–776.e3.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Miura, K., Kodama, Y., Inokuchi, S., Schnabl, B., Aoyama, T., Ohnishi, H., Olefsky, J.M., Brenner, D.A., and Seki, E. (2010). Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1β in mice. Gastroenterology 139, 323–334.e7.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Molloy, M.J., Bouladoux, N., and Belkaid, Y. (2012). Intestinal microbiota: shaping local and systemic immune responses. Semin Immunol 24, 58–66.CrossRefPubMedGoogle Scholar
  34. Olszak, T., An, D., Zeissig, S., Vera, M.P., Richter, J., Franke, A., Glickman, J.N., Siebert, R., Baron, R.M., Kasper, D.L., and Blumberg, R.S. (2012). Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Park, S.H., Benlagha, K., Lee, D., Balish, E., and Bendelac, A. (2000). Unaltered phenotype, tissue distribution and function of Vα14+ NKT cells in germ-free mice. Eur J Immunol 30, 620–625.CrossRefPubMedGoogle Scholar
  36. Peng, H., Wisse, E., and Tian, Z. (2016). Liver natural killer cells: subsets and roles in liver immunity. Cell Mol Immunol 13, 328–336.CrossRefPubMedGoogle Scholar
  37. Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., Guo, J., Le Chatelier, E., Yao, J., Wu, L., Zhou, J., Ni, S., Liu, L., Pons, N., Batto, J.M., Kennedy, S.P., Leonard, P., Yuan, C., Ding, W., Chen, Y., Hu, X., Zheng, B., Qian, G., Xu, W., Ehrlich, S.D., Zheng, S., and Li, L. (2014). Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64.CrossRefPubMedGoogle Scholar
  38. Rao, R., Graffeo, C.S., Gulati, R., Jamal, M., Narayan, S., Zambirinis, C.P., Barilla, R., Deutsch, M., Greco, S.H., Ochi, A., Tomkötter, L., Blobstein, R., Avanzi, A., Tippens, D.M., Gelbstein, Y., Van Heerden, E., and Miller, G. (2014). Interleukin 17-producing γδT cells promote hepatic regeneration in mice. Gastroenterology 147, 473–484.e2.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rivera, C.A., Adegboyega, P., van Rooijen, N., Tagalicud, A., Allman, M., and Wallace, M. (2007). Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol 47, 571–579.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Robinson, M.W., Harmon, C., and O’Farrelly, C. (2016). Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 13, 267–276.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Round, J.L., and Mazmanian, S.K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9, 313–323.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Schrumpf, E., Tan, C., Karlsen, T.H., Sponheim, J., Björkström, N.K., Sundnes, O., Alfsnes, K., Kaser, A., Jefferson, D.M., Ueno, Y., Eide, T.J., Haraldsen, G., Zeissig, S., Exley, M.A., Blumberg, R.S., and Melum, E. (2015). The biliary epithelium presents antigens to and activates natural killer T cells. Hepatology 62, 1249–1259.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Seki, E., De Minicis, S., Osterreicher, C.H., Kluwe, J., Osawa, Y., Brenner, D.A., and Schwabe, R.F. (2007). TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med 13, 1324–1332.CrossRefPubMedGoogle Scholar
  44. Seki, E., and Schnabl, B. (2012). Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol 590, 447–458.CrossRefPubMedGoogle Scholar
  45. Sharma, M., Mitnala, S., Vishnubhotla, R.K., Mukherjee, R., Reddy, D.N., and Rao, P.N. (2015). The riddle of nonalcoholic fatty liver disease: progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis. J Clin Exp Hepatol 5, 147–158.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Shibata, K., Yamada, H., Hara, H., Kishihara, K., and Yoshikai, Y. (2007). Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol 178, 4466–4472.CrossRefPubMedGoogle Scholar
  47. Spruss, A., Kanuri, G., Wagnerberger, S., Haub, S., Bischoff, S.C., and Bergheim, I. (2009). Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 50, 1094–1104.CrossRefPubMedGoogle Scholar
  48. Sun, C., Sun, H., Zhang, C., and Tian, Z. (2015). NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma. Cell Mol Immunol 12, 292–302.CrossRefPubMedGoogle Scholar
  49. Sun, H., Sun, C., Tian, Z., and Xiao, W. (2013). NK cells in immunotolerant organs. Cell Mol Immunol 10, 202–212.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Syn, W.K., Htun Oo, Y., Pereira, T.A., Karaca, G.F., Jung, Y., Omenetti, A., Witek, R.P., Choi, S.S., Guy, C.D., Fearing, C.M., Teaberry, V., Pereira, F.E.L., Adams, D.H., and Diehl, A.M. (2010). Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 51, 1998–2007.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tan, Z., Qian, X., Jiang, R., Liu, Q., Wang, Y., Chen, C., Wang, X., Ryffel, B., and Sun, B. (2013). IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol 191, 1835–1844.CrossRefPubMedGoogle Scholar
  52. Uhrig, A., Banafsche, R., Kremer, M., Hegenbarth, S., Hamann, A., Neurath, M., Gerken, G., Limmer, A., and Knolle, P.A. (2005). Development and functional consequences of LPS tolerance in sinusoidal endothelial cells of the liver. J Leukocyte Biol 77, 626–633.CrossRefPubMedGoogle Scholar
  53. Vivier, E., Raulet, D.H., Moretta, A., Caligiuri, M.A., Zitvogel, L., Lanier, L.L., Yokoyama, W.M., and Ugolini, S. (2011). Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wang, H., and Yin, S. (2015). Natural killer T cells in liver injury, inflammation and cancer. Expert Rev Gastroenterol Hepatol 9, 1077–1085.CrossRefPubMedGoogle Scholar
  55. Wingender, G., Stepniak, D., Krebs, P., Lin, L., McBride, S., Wei, B., Braun, J., Mazmanian, S.K., and Kronenberg, M. (2012). Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology 143, 418–428.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wu, D., Wu, P., Qiu, F., Wei, Q., and Huang, J. (2017). Human γδT-cell subsets and their involvement in tumor immunity. Cell Mol Immunol 14, 245–253.CrossRefPubMedGoogle Scholar
  57. Wu, J., Meng, Z., Jiang, M., Zhang, E., Trippler, M., Broering, R., Bucchi, A., Krux, F., Dittmer, U., Yang, D., Roggendorf, M., Gerken, G., Lu, M., and Schlaak, J.F. (2010). Toll-like receptor-induced innate immune responses in non-parenchymal liver cells are cell type-specific. Immunology 129, 363–374.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wu, X., Sun, R., Chen, Y., Zheng, X., Bai, L., Lian, Z., Wei, H., and Tian, Z. (2015). Oral ampicillin inhibits liver regeneration by breaking hepatic innate immune tolerance normally maintained by gut commensal bacteria. Hepatology 62, 253–264.CrossRefPubMedGoogle Scholar
  59. Yan, A.W., E. Fouts, D., Brandl, J., Stärkel, P., Torralba, M., Schott, E., Tsukamoto, H., E. Nelson, K., A. Brenner, D., and Schnabl, B (2011). Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 53, 96–105.CrossRefPubMedGoogle Scholar
  60. Yin, S., Wang, H., Bertola, A., Feng, D., Xu, M.J., Wang, Y., and Gao, B. (2014). Activation of invariant natural killer T cells impedes liver regeneration by way of both IFN-γ- and IL-4-dependent mechanisms. Hepatology 60, 1356–1366.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yoshimoto, S., Loo, T.M., Atarashi, K., Kanda, H., Sato, S., Oyadomari, S., Iwakura, Y., Oshima, K., Morita, H., Hattori, M., Hattori, M., Honda, K., Ishikawa, Y., Hara, E., and Ohtani, N. (2013). Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101.CrossRefPubMedGoogle Scholar
  62. Zhang, Q.F., Yin, W.W., Xia, Y., Yi, Y.Y., He, Q.F., Wang, X., Ren, H., and Zhang, D.Z. (2016a). Liver-infiltrating CD11b-CD27− NK subsets account for NK-cell dysfunction in patients with hepatocellular carcinoma and are associated with tumor progression. Cell Mol Immunol in press doi: 10.1038/cmi.2016.28.Google Scholar
  63. Zhang, X., Jiang, Z., Gu, Y., Liu, Y., Cao, X., and Han, Y. (2016b). Inflammation- induced CD69+ Kupffer cell feedback inhibits T cell proliferation via membrane-bound TGF-β1. Sci China Life Sci 59, 1259–1269.CrossRefPubMedGoogle Scholar
  64. Zhang, Y., and Liang, C. (2016). Innate recognition of microbial-derived signals in immunity and inflammation. Sci China Life Sci 59, 1210–1217.CrossRefPubMedGoogle Scholar
  65. Zhao, N., Hao, J., Ni, Y., Luo, W., Liang, R., Cao, G., Zhao, Y., Wang, P., Zhao, L., Tian, Z., Flavell, R., Hong, Z., Han, J., Yao, Z., Wu, Z., and Yin, Z. (2011). Vγ4 γδ T cell-derived IL-17A negatively regulates NKT cell function in Con A-induced fulminant hepatitis. J Immunol 187, 5007–5014.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Sciences), School of Life Science and Medical CenterUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations