Advertisement

Science China Life Sciences

, Volume 60, Issue 9, pp 980–991 | Cite as

Neomycin biosynthesis is regulated positively by AfsA-g and NeoR in Streptomyces fradiae CGMCC 4.7387

  • Xiangxi Meng
  • Wenzhao Wang
  • Zhoujie Xie
  • Pengwei Li
  • Yue Li
  • Zhengyan Guo
  • Yingjian Lu
  • Jie Yang
  • Kaile Guan
  • Zhaoxin Lu
  • Huarong Tan
  • Yihua ChenEmail author
Research Paper

Abstract

Neomycins are a group of aminoglycoside antibiotics with both clinical and agricultural applications. To elucidate the regulatory mechanism of neomycin biosynthesis, we completed draft genome sequencing of a neomycin producer Streptomyces fradiae CGMCC 4.7387 from marine sediments, and the neomycin biosynthesis gene cluster was identified. Inactivation of the afsA-g gene encoding a γ-butyrolactone (GBL) synthase in S. fradiae CGMCC 4.7387 resulted in a significant decrease of neomycin production. Quantitative RT-PCR analysis revealed that the transcriptional level of neoR and the aphA-neoGH operon were reduced in the afsA-g::aac(3)IV mutant. Interestingly, a conserved binding site of AdpA, a key activator in the GBL regulatory cascade, was discovered upstream of neoR, a putative regulatory gene encoding a protein with an ATPase domain and a tetratricopeptide repeat domain. When neoR was inactivated, the neomycin production was reduced about 40% in comparison with the WT strain. Quantitative RT-PCR analysis revealed that the transcriptional levels of genes in the aphA-neoGH operon were reduced clearly in the neoR::aac(3)IV mutant. Finally, the titers of neomycin were improved considerably by overexpression of afsA-g and neoR in S. fradiae CGMCC 4.7387.

Keywords

neomycin regulation γ-butyrolactone Streptomyces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was funded in part by the Ministry of Science and Technology of China (2015CB150600) and the National Natural Science Foundation of China (31370095 and 31522001). Yihua Chen is an awardee for the ‘Hundred Talents Program’ of the Chinese Academy of Sciences.

References

  1. Ando, N., Matsumori, N., Sakuda, S., Beppu, T., and Horinouchi, S. (1997). Involvement of AfsA in A-factor biosynthesis as a key enzyme. J Antibiot 50, 847–852.CrossRefPubMedGoogle Scholar
  2. Bérdy, J. (2005). Bioactive microbial metabolites. J Antibiot 58, 1–26.CrossRefPubMedGoogle Scholar
  3. Bibb, M.J. (2005). Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8, 208–215.CrossRefPubMedGoogle Scholar
  4. Chao, R., Yuan, Y.B., and Zhao, H.M. (2015). Building biological foundries for next-generation synthetic biology. Sci China Life Sci 58, 658–665.CrossRefPubMedGoogle Scholar
  5. Chater, K.F. (2006). Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos Trans R Soc B-Biol Sci 361, 761–768.CrossRefGoogle Scholar
  6. Chen, Y., Wendt-Pienkowski, E., and Shen, B. (2008). Identification and utility of FdmR1 as a Streptomyces antibiotic regulatory protein activator for fredericamycin production in Streptomyces griseus ATCC 49344 and heterologous hosts. J Bacteriol 190, 5587–5596.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Crameri, R., and Davies, J.E. (1986). Increased production of aminoglycosides associated with amplified antibiotic resistance genes.. J Antibiot 39, 128–135.CrossRefPubMedGoogle Scholar
  8. De Schrijver, A., and De Mot, R. (1999). A subfamily of MalT-related ATPdependent regulators in the LuxR family. Microbiology 145, 1287–1288.CrossRefPubMedGoogle Scholar
  9. Kato, J., Funa, N., Watanabe, H., Ohnishi, Y., and Horinouchi, S. (2007). Biosynthesis of γ-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proc Natl Acad Sci USA 104, 2378–2383.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000). Practical Streptomyces genetics. (Norwich: The John Innes Foundation).Google Scholar
  11. Kudo, F., and Eguchi, T. (2009). Biosynthetic enzymes for the aminoglycosides butirosin and neomycin. Methods Enzymol 459, 493–519.CrossRefPubMedGoogle Scholar
  12. Li, C. (1997). Ligation independent cloning irrespective of restriction site compatibility. Nucleic Acids Res 25, 4165–4166.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Li, D., Li, H., Ni, X., Zhang, H., and Xia, H. (2013a). Construction of a gentamicin C1a-overproducing strain of Micromonospora purpurea by inactivation of the gacD gene. Microbiol Res 168, 263–267.CrossRefPubMedGoogle Scholar
  14. Li, J., Guo, Z., Huang, W., Meng, X., Ai, G., Tang, G., and Chen, Y. (2013b). Mining of a streptothricin gene cluster from Streptomyces sp. TP-A0356 genome via heterologous expression. Sci China Life Sci 56, 619–627.CrossRefPubMedGoogle Scholar
  15. Li, P., Li, J., Guo, Z., Tang, W., Han, J., Meng, X., Hao, T., Zhu, Y., Zhang, L., and Chen, Y. (2015). An efficient blue-white screening based gene inactivation system for Streptomyces. Appl Microbiol Biotechnol 99, 1923–1933.CrossRefPubMedGoogle Scholar
  16. Li, R., Liu, G., Xie, Z., He, X., Chen, W., Deng, Z., and Tan, H. (2010). PolY, a transcriptional regulator with ATPase activity, directly activates transcription ofpolRin polyoxin biosynthesis in Streptomyces cacaoi. Mol Microbiol 75, 349–364.CrossRefPubMedGoogle Scholar
  17. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.CrossRefPubMedGoogle Scholar
  18. Liu, G., Chater, K.F., Chandra, G., Niu, G., and Tan, H. (2013). Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77, 112–143.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lombó, F., Braña, A.F., Méndez, C., and Salas, J.A. (1999). The mithramycin gene cluster of Streptomyces argillaceus contains a positive regulatory gene and two repeated DNA sequences that are located at both ends of the cluster. J Bacteriol 181, 642–647.PubMedPubMedCentralGoogle Scholar
  20. Lu, Y., Dong, X., Liu, S., and Bie, X. (2009). Characterization and identification of a novel marine Streptomyces sp. produced antibacterial substance. Mar Biotechnol 11, 717–724.CrossRefPubMedGoogle Scholar
  21. Niu, G., Chater, K.F., Tian, Y., Zhang, J., and Tan, H. (2016). Specialised metabolites regulating antibiotic biosynthesis inStreptomyces spp.. FEMS Microbiol Rev 40, 554–573.CrossRefPubMedGoogle Scholar
  22. Ohnishi, Y., Yamazaki, H., Kato, J.Y., Tomono, A., and Horinouchi, S. (2005). AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotech Biochem 69, 431–439.CrossRefGoogle Scholar
  23. Ohnishi, Y., Ishikawa, J., Hara, H., Suzuki, H., Ikenoya, M., Ikeda, H., Yamashita, A., Hattori, M., and Horinouchi, S. (2008). Genome sequence of the Streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190, 4050–4060.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Onaka, H., and Horinouchi, S. (1997). DNA-binding activity of the A-factor receptor protein and its recognition DNA sequences. Mol Microbiol 24, 991–1000.CrossRefPubMedGoogle Scholar
  25. Paget, M.S., Chamberlin, L., Atrih, A., Foster, S.J., and Buttner, M.J. (1999). Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181, 204–211.PubMedPubMedCentralGoogle Scholar
  26. Retzlaff, L., and Distler, J. (1995). The regulator of streptomycin gene expression, StrR, of Streptomyces griseus is a DNA binding activator protein with multiple recognition sites. Mol Microbiol 18, 151–162.CrossRefPubMedGoogle Scholar
  27. Sambrook, J., Frisch, E.F., and Maniatis, T. (1989). Molecular cloning. (New York: Cold Spring Harbor).Google Scholar
  28. Schatz, A., Bugle, E., and Waksman, S.A. (1944). Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Exp Biol Med 55, 66–69.CrossRefGoogle Scholar
  29. Sekurova, O.N., Brautaset, T., Sletta, H., Borgos, S.E.F., Jakobsen, O.M., Ellingsen, T.E., Strom, A.R., Valla, S., and Zotchev, S.B. (2004). In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. J Bacteriology 186, 1345–1354.CrossRefGoogle Scholar
  30. Takano, E. (2006). γ-Butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9, 287–294.CrossRefPubMedGoogle Scholar
  31. Tanaka, A., Takano, Y., Ohnishi, Y., and Horinouchi, S. (2007). AfsR recruits RNA polymerase to the afsS promoter: a model for transcriptional activation by SARPs. J Mol Biol 369, 322–333.CrossRefPubMedGoogle Scholar
  32. Vujaklija, D., Horinouchi, S., and Beppu, T. (1993). Detection of an A-factor- responsive protein that binds to the upstream activation sequence of strR, a regulatory gene for streptomycin biosynthesis in Streptomyces griseus. J Bacteriol 175, 2652–2661.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Waksman, S.A., and Lechevalier, H.A. (1949). Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science 109, 305–307.CrossRefPubMedGoogle Scholar
  34. Yamazaki, H., Tomono, A., Ohnishi, Y., and Horinouchi, S. (2004). DNAbinding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Mol Microbiol 53, 555–572.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Xiangxi Meng
    • 1
    • 2
  • Wenzhao Wang
    • 3
  • Zhoujie Xie
    • 1
  • Pengwei Li
    • 1
  • Yue Li
    • 1
  • Zhengyan Guo
    • 1
  • Yingjian Lu
    • 4
  • Jie Yang
    • 5
  • Kaile Guan
    • 2
    • 3
  • Zhaoxin Lu
    • 5
  • Huarong Tan
    • 1
    • 2
  • Yihua Chen
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  4. 4.Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkUSA
  5. 5.College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina

Personalised recommendations