Advertisement

Science China Life Sciences

, Volume 60, Issue 9, pp 935–938 | Cite as

Biosynthesis and molecular regulation of secondary metabolites in microorganisms

  • Yue Li
  • Huarong TanEmail author
Editorial

Notes

Acknowledgements

This work was supported by grants from the Ministry of Science and Technology of China (2013CB734001) and the National Natural Science Foundation of China (31470206 and 31571281).

References

  1. Bentley, S.D., Chater, K.F., Cerdeño-Tárraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C.W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C.H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O’Neil, S., Rabbinowitsch, E., Rajandream, M.A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B.G., Parkhill, J., and Hopwood, D.A. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147.CrossRefPubMedGoogle Scholar
  2. Bush, M.J., Chandra, G., Bibb, M.J., Findlay, K.C., and Buttner, M.J. (2016). Genome-wide chromatin immunoprecipitation sequencing analysis shows that WhiB is a transcription factor that cocontrols its regulon with WhiA to initiate developmental cell division in Streptomyces. mBio 7, e00523–00516.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chao, R., Yuan, Y.B., and Zhao, H.M. (2015). Building biological foundries for next-generation synthetic biology. Sci China Life Sci 58, 658–665.CrossRefPubMedGoogle Scholar
  4. Jiang, L., Wei, J., Li, L., Niu, G., and Tan, H. (2013). Combined gene cluster engineering and precursor feeding to improve gougerotin production in Streptomyces graminearus. Appl Microbiol Biotechnol 97, 10469–10477.CrossRefPubMedGoogle Scholar
  5. Kawai, K., Wang, G., Okamoto, S., and Ochi, K. (2007). The rare earth, scandium, causes antibiotic overproduction inStreptomyces spp.. FEMS Microbiol Lett 274, 311–315.CrossRefPubMedGoogle Scholar
  6. Laureti, L., Song, L., Huang, S., Corre, C., Leblond, P., Challis, G.L., and Aigle, B. (2011). Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci USA 108, 6258–6263.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Li, J., Li, L., Tian, Y., Niu, G., and Tan, H. (2011). Hybrid antibiotics with the nikkomycin nucleoside and polyoxin peptidyl moieties. Metab Eng 13, 336–344.CrossRefPubMedGoogle Scholar
  8. Liu, G., Chater, K.F., Chandra, G., Niu, G., and Tan, H. (2013). Molecular regulation of antibiotic biosynthesis in Streptomyces. Microb Mol Biol Rev 77, 112–143.CrossRefGoogle Scholar
  9. Metsä-Ketelä, M., Ylihonko, K., and Mäntsälä, P. (2004). Partial activation of a silent angucycline-type gene cluster from a rubromycin beta producing Streptomyces sp. PGA64. J Antibiot 57, 502–510.CrossRefPubMedGoogle Scholar
  10. Niu, G., Chater, K.F., Tian, Y., Zhang, J., and Tan, H. (2016). Specialised metabolites regulating antibiotic biosynthesis inStreptomyces spp.. FEMS Microbiol Rev 40, 554–573.CrossRefPubMedGoogle Scholar
  11. Nutzmann, H.W., Reyes-Dominguez, Y., Scherlach, K., Schroeckh, V., Horn, F., Gacek, A., Schumann, J., Hertweck, C., Strauss, J., and Brakhage, A.A. (2011). Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci USA 108, 14282–14287.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Onaka, H., Mori, Y., Igarashi, Y., and Furumai, T. (2011). Mycolic acidcontaining bacteria induce natural-product biosynthesis in Streptomyces Species. Appl Environ Microbiol 77, 400–406.CrossRefPubMedGoogle Scholar
  13. Qu, X., Lei, C., and Liu, W. (2011). Transcriptome mining of active biosynthetic pathways and their associated products in Streptomyces flaveolus. Angew Chem Int Ed 50, 9651–9654.CrossRefGoogle Scholar
  14. Schroeckh, V., Scherlach, K., Nützmann, H.W., Shelest, E., Schmidt-Heck, W., Schuemann, J., Martin, K., Hertweck, C., and Brakhage, A.A. (2009). Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci USA 106, 14558–14563.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Xu, G., Wang, J., Wang, L., Tian, X., Yang, H., Fan, K., Yang, K., and Tan, H. (2010). “Pseudo” butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem 285, 27440–27448.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Zhang, Y., Pan, G., Zou, Z., Fan, K., Yang, K., and Tan, H. (2013). JadR*-mediated feed-forward regulation of cofactor supply in jadomycin biosynthesis. Mol Microbiol 90, 884–897.CrossRefPubMedGoogle Scholar
  17. Zou, Z., Du, D., Zhang, Y., Zhang, J., Niu, G., and Tan, H. (2014). A butyrolactone-sensing activator/repressor, JadR3, controls a regulatory mini-network for jadomycin biosynthesis. Mol Microbiol 94, 490–505.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations