Skip to main content
Log in

Genome re-sequencing analysis uncovers pathogenecity-related genes undergoing positive selection in Magnaporthe oryzae

  • Research Paper
  • THEMATIC ISSUE: Biotic information and pest control
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Rice blast caused by Magnaporthe oryzae (M. oryzae) is one of the most destructive diseases, which causes significant rice yield losses and affects global food security. To better understand genetic variations among different isolates of M. oryzae in nature, we re-sequenced the genomes of two field isolates, CH43 and Zhong-10-8-14, which showed distinct pathogenecity on most of the rice cultivars. Genome-wide genetic variation analysis reveals that ZHONG-10-8-14 exhibits higher sequence variations than CH43. Structural variations (SVs) detection shows that the sequence variations primarily occur in exons and intergenic regions. Bioinformatics analysis for gene variations reveals that many pathogenecity-related pathways are enriched. In addition, 193 candidate effectors with various DNA polymorphisms were identified, including two known effectors AVR-Pik and AVR-Pita1. Comparative polymorphism analysis of thirteen randomly selected effectors suggests that the genetic variations of effectors are under positive selection. The expression pattern analysis of several pathogenecity-related variant genes indicates that these genes are differentially regulated in two isolates, with much higher expression levels in Zhong-10-8-14 than CH43. Our data demonstrate that the genetic variations of effectors and pathogenecity-related genes are under positive selection, resulting in the distinct pathogenicities of CH43 and Zhong-10-8-14 on rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, C., Lian, B., Hu, J., Zhai, H., Wang, X., Venu, R.C., Liu, E., Wang, Z., Chen, M., Wang, B., Wang, G.L., Wang, Z., and Mitchell, T.K. (2013). Genome comparison of two Magnaporthe oryzae field isolates reveals genome variations and potential virulence effectors. BMC Genomics 14, 887.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, K., Wallis, J.W., McLellan, M.D., Larson, D.E., Kalicki, J.M., Pohl, C.S., McGrath, S.D., Wendl, M.C., Zhang, Q., Locke, D.P., Shi, X., Fulton, R.S., Ley, T.J., Wilson, R.K., Ding, L., and Mardis, E.R. (2009). BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Meth 6, 677–681.

    Article  CAS  Google Scholar 

  • Chuma, I., Isobe, C., Hotta, Y., Ibaragi, K., Futamata, N., Kusaba, M., Yoshida, K., Terauchi, R., Fujita, Y., Nakayashiki, H., Valent, B., and Tosa, Y. (2011). Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 7, e1002147.

    Article  Google Scholar 

  • Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., and Ruden, D.M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 6, 80–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cota-Sánchez, J.H., Remarchuk, K., and Ubayasena, K. (2006). Ready-touse DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Mol Biol Rep 24, 161–167.

    Article  Google Scholar 

  • Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J., Thon, M., Kulkarni, R., Xu, J.R., Pan, H., Read, N.D., Lee, Y.H., Carbone, I., Brown, D., Oh, Y.Y., Donofrio, N., Jeong, J.S., Soanes, D.M., Djonovic, S., Kolomiets, E., Rehmeyer, C., Li, W., Harding, M., Kim, S., Lebrun, M.H., Bohnert, H., Coughlan, S., Butler, J., Calvo, S., Ma, L.J., Nicol, R., Purcell, S., Nusbaum, C., Galagan, J.E., and Birren, B.W. (2005). The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–986.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Y., Li, Y., Zhao, M., Jing, M., Liu, X., Liu, M., Guo, X., Zhang, X., Chen, Y., Liu, Y., Liu, Y., Ye, W., Zhang, H., Wang, Y., Zheng, X., Wang, P., and Zhang, Z. (2015). Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution. PLoS Pathog 11, e1004801.

    Article  Google Scholar 

  • Du, Z., Zhou, X., Ling, Y., Zhang, Z., and Su, Z. (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38, W64–W70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egan, M.J., Wang, Z.Y., Jones, M.A., Smirnoff, N., and Talbot, N.J. (2007). Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci USA 104, 11772–11777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis, J.G., Rafiqi, M., Gan, P., Chakrabarti, A., and Dodds, P.N. (2009). Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr Opin Plant Biol 12, 399–405.

    Article  CAS  PubMed  Google Scholar 

  • Greene, G.H., McGary, K.L., Rokas, A., and Slot, J.C. (2014). Ecology drives the distribution of specialized tyrosine metabolism modules in fungi. Genome Biol Evol 6, 121–132.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, M., Chen, Y., Du, Y., Dong, Y., Guo, W., Zhai, S., Zhang, H., Dong, S., Zhang, Z., Wang, Y., Wang, P., and Zheng, X. (2011). The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog 7, e1001302.

    Article  Google Scholar 

  • Horton, P., Park, K.J., Obayashi, T., and Nakai, K. (2006). Protein subcellular localization prediction with WOLF PSORT. Ser Adv Bioinform 3, 39-48.

    CAS  Google Scholar 

  • Kanzaki, H., Yoshida, K., Saitoh, H., Fujisaki, K., Hirabuchi, A., Alaux, L., Fournier, E., Tharreau, D., and Terauchi, R. (2012). Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J 72, 894–907.

    Article  CAS  PubMed  Google Scholar 

  • Keller, S., Macheleidt, J., Scherlach, K., Schmaler-Ripcke, J., Jacobsen, I.D., Heinekamp, T., and Brakhage, A.A. (2011). Pyomelanin formation in Aspergillus fumigatus requires HmgX and the transcriptional activator HmgR but is dispensable for virulence. PLoS ONE 6, e26604.

    Article  Google Scholar 

  • Kim, K.S., and Lee, Y.H. (2012). Gene expression profiling during conidiation in the rice blast pathogen Magnaporthe oryzae. PLoS ONE 7, e43202.

    Article  Google Scholar 

  • Koeck, M., Hardham, A.R., and Dodds, P.N. (2011). The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cell Microbiol 13, 1849–1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leach, J.E., Vera Cruz, C.M., Bai, J., and Leung, H. (2001). Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu Rev Phytopathol 39, 187–224.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Yu, Y., Zhou, Z., and Zhou, J.M. (2016). Plant pattern-recognition receptors controlling innate immunity. Sci China Life Sci 59, 878–888.

    Article  PubMed  Google Scholar 

  • Maqbool, A., Saitoh, H., Franceschetti, M., Stevenson, C.E.M., Uemura, A., Kanzaki, H., Kamoun, S., Terauchi, R., and Banfield, M.J. (2015). Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. eLife 4, e08709.

    Article  Google Scholar 

  • McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., and DePristo, M.A. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orbach, M.J., Farrall, L., Sweigard, J.A., Chumley, F.G., and Valent, B. (2000). A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12, 2019–2032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 8, 785–786.

    Article  CAS  Google Scholar 

  • Qi, Z., Wang, Q., Dou, X., Wang, W., Zhao, Q., Lv, R., Zhang, H., Zheng, X., Wang, P., and Zhang, Z. (2012). MoSwi6, an APSES family transcription factor, interacts with MoMps1 and is required for hyphal and conidial morphogenesis, appressorial function and pathogenicity of Magnaporthe oryzae. Mol Plant Pathol 13, 677–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu, L.J., Chen, J., Liu, M., Pan, N., Okamoto, H., Lin, Z., Li, C., Li, D., Wang, J., Zhu, G., Zhao, X., Chen, X., Gu, H., and Chen, Z. (2003). Molecular cloning and functional analysis of a novel type of Bowman-Birk inhibitor gene family in rice. Plant Physiol 133, 560–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reumers, J., De Rijk, P., Zhao, H., Liekens, A., Smeets, D., Cleary, J., Van Loo, P., Van Den Bossche, M., Catthoor, K., Sabbe, B., Despierre, E., Vergote, I., Hilbush, B., Lambrechts, D., and Del-Favero, J. (2011). Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing. Nat Biotechnol 30, 61–68.

    Article  PubMed  Google Scholar 

  • Sesma, A., and Osbourn, A.E. (2004). The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431, 582–586.

    Article  CAS  PubMed  Google Scholar 

  • Soanes, D.M., Chakrabarti, A., Paszkiewicz, K.H., Dawe, A.L., and Talbot, N.J. (2012). Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8, e1002514.

    Article  Google Scholar 

  • Wilson, R.A., and Talbot, N.J. (2009). Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Micro 7, 185–195.

    Article  CAS  Google Scholar 

  • Xie, C., Mao, X., Huang, J., Ding, Y., Wu, J., Dong, S., Kong, L., Gao, G., Li, C.Y., and Wei, L. (2011). KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39, W316–W322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, M., Yang, J., Li, Z., Hu, S., Yao, N., Dean, R.A., Zhao, W., Shen, M., Zhang, H., Li, C., Liu, L., Cao, L., Xu, X., Xing, Y., Hsiang, T., Zhang, Z., Xu, J.R., and Peng, Y.L. (2012). Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae. PLoS Genet 8, e1002869.

    Article  Google Scholar 

  • Yang, C., Li, W., Cao, J., Meng, F., Yu, Y., Huang, J., Jiang, L., Liu, M., Zhang, Z., Chen, X., Miyamoto, K., Yamane, H., Zhang, J., Chen, S., and Liu, J. (2017). Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. Plant J 89, 338–353.

    Article  CAS  PubMed  Google Scholar 

  • Ye, K., Schulz, M.H., Long, Q., Apweiler, R., and Ning, Z. (2009). Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25, 2865–2871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida, K., Saitoh, H., Fujisawa, S., Kanzaki, H., Matsumura, H., Yoshida, K., Tosa, Y., Chuma, I., Takano, Y., Win, J., Kamoun, S., and Terauchi, R. (2009). Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21, 1573–1591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, S., and Xu, J.R. (2014). Effectors and effector delivery in Magnaporthe oryzae. PLoS Pathog 10, e1003826.

    Article  Google Scholar 

  • Zhang, Y., and Liang, C. (2016). Innate recognition of microbial-derived signals in immunity and inflammation. Sci China Life Sci 59, 1210–1217.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Lihuang Zhu in Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, for providing the M. oryzae isolates. The work was supported by the Chinese Academy of Sciences (Strategic Priority Research Program XDB11020300), National Natural Science Foundation of China (31570252, 31601629), the start-up fund of “One Hundred Talents” program of the Chinese Academy of Sciences and by the grants from the State Key Laboratory of Plant Genomics (O8KF021011) and the Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture of China Beijing University of Agriculture (KFK2015001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suiyan Li or Jun Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Yu, Y., Huang, J. et al. Genome re-sequencing analysis uncovers pathogenecity-related genes undergoing positive selection in Magnaporthe oryzae . Sci. China Life Sci. 60, 880–890 (2017). https://doi.org/10.1007/s11427-017-9076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9076-4

Keywords

Navigation