Advertisement

Science China Life Sciences

, Volume 60, Issue 5, pp 458–467 | Cite as

Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field

  • Zhi-Yao He
  • Ke Men
  • Zhou Qin
  • Yang Yang
  • Ting XuEmail author
  • Yu-Quan Wei
Review

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) system provides a novel genome editing technology that can precisely target a genomic site to disrupt or repair a specific gene. Some CRISPR-Cas9 systems from different bacteria or artificial variants have been discovered or constructed by biologists, and Cas9 nucleases and single guide RNAs (sgRNA) are the major components of the CRISPR-Cas9 system. These Cas9 systems have been extensively applied for identifying therapeutic targets, identifying gene functions, generating animal models, and developing gene therapies. Moreover, CRISPR-Cas9 systems have been used to partially or completely alleviate disease symptoms by mutating or correcting related genes. However, the efficient transfer of CRISPR-Cas9 system into cells and target organs remains a challenge that affects the robust and precise genome editing activity. The current review focuses on delivery systems for Cas9 mRNA, Cas9 protein, or vectors encoding the Cas9 gene and corresponding sgRNA. Non-viral delivery of Cas9 appears to help Cas9 maintain its on-target effect and reduce off-target effects, and viral vectors for sgRNA and donor template can improve the efficacy of genome editing and homology-directed repair. Safe, efficient, and producible delivery systems will promote the application of CRISPR-Cas9 technology in human gene therapy.

Keywords

genome editing CRISPR Cas9 viral vector non-viral vector gene therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural and Scientific Foundation of China (81602699 to Zhi-Yao He, 81502677 to Ke Men, 81402302 to Yang Yang), the National High Technology Research and Development Program of China (2015AA020309 to Zhi-Yao He), and the China Postdoctoral Science Foundation Funded Project (2015M570791 to Zhi-Yao He).

References

  1. Adler, A.F., Grigsby, C.L., Kulangara, K., Wang, H., Yasuda, R., and Leong, K.W. (2012). Nonviral direct conversion of primary mouse embryonic fibroblasts to neuronal cells. Mol Ther Nucleic Acids 1, e32.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aubrey, B.J., Kelly, G.L., Kueh, A.J., Brennan, M.S., O’Connor, L., Milla, L., Wilcox, S., Tai, L., Strasser, A., and Herold, M.J. (2015). An inducible lentiviral guide RNA platform enables the identification of tumor- essential genes and tumor-promoting mutations in vivo. Cell Rep 10, 1422–1432.CrossRefPubMedGoogle Scholar
  3. Blinka, S., Reimer M.H., Pulakanti, K., and Rao, S. (2016). Super-enhancers at the nanog locus differentially regulate neighboring pluripotency-associated genes. Cell Rep 17, 19–28.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen, Y., Wang, Z., Ni, H., Xu, Y., Chen, Q., and Jiang, L. (2017). CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci China Life Sci in press doi: 10.1007/s11427-017-9021-5.Google Scholar
  5. Cheong, T.C., Compagno, M., and Chiarle, R. (2016). Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system. Nat Commun 7, 10934.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cho, S.W., Kim, S., Kim, Y., Kweon, J., Kim, H.S., Bae, S., and Kim, J.S. (2014). Analysis of off-target effects of CRISPR/Cas-derived RNAguided endonucleases and nickases. Genome Res 24, 132–141.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cox, D.B.T., Platt, R.J., and Zhang, F. (2015). Therapeutic genome editing: prospects and challenges. Nat Med 21, 121–131.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Croce, C.M., Zhang, K., and Wei, Y. (2016). Announcing signal transduction and targeted therapy. Sig Transduct Target Ther 1, 15006.CrossRefGoogle Scholar
  10. Cyranoski, D. (2016). Chinese scientists to pioneer first human CRISPR trial. Nature 535, 476–477.CrossRefPubMedGoogle Scholar
  11. Davis, K.M., Pattanayak, V., Thompson, D.B., Zuris, J.A., and Liu, D.R. (2015). Small molecule-triggered Cas9 protein with improved genomeediting specificity. Nat Chem Biol 11, 316–318.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Deng, H., Li, W., and Wei, Y. (2016). Translational medicine center of West China Hospital. Sci China Life Sci 59, 1055–1056.CrossRefPubMedGoogle Scholar
  13. Feng, Y., Sassi, S., Shen, J.K., Yang, X., Gao, Y., Osaka, E., Zhang, J., Yang, S., Yang, C., Mankin, H.J., Hornicek, F.J., and Duan, Z. (2015). Targeting Cdk11 in osteosarcoma cells using the CRISPR-cas9 system. J Orthop Res 33, 199–207.CrossRefPubMedGoogle Scholar
  14. Fricano-Kugler, C.J., Williams, M.R., Salinaro, J.R., Li, M., and Luikart, B. (2016). Designing, packaging, and delivery of high titer CRISPR retro and lentiviruses via stereotaxic injection. J Vis Exp in press doi: 10.3791/53783.Google Scholar
  15. Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M., and Joung, J.K. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32, 279–284.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gaj, T., Gersbach, C.A., and Barbas Iii, C.F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotech 31, 397–405.CrossRefGoogle Scholar
  17. Garneau, J.E., Dupuis, M.È., Villion, M., Romero, D.A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadá n, A.H., and Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71.CrossRefPubMedGoogle Scholar
  18. Harel, I., Valenzano, D.R., and Brunet, A. (2016). Efficient genome engineering approaches for the short-lived African turquoise killifish. Nat Protoc 11, 2010–2028.CrossRefPubMedGoogle Scholar
  19. He, Z.Y., Deng, F., Wei, X.W., Ma, C.C., Luo, M., Zhang, P., Sang, Y.X., Liang, X., Liu, L., Qin, H.X., Shen, Y.L., Liu, T., Liu, Y.T., Wang, W., Wen, Y.J., Zhao, X., Zhang, X.N., Qian, Z.Y., and Wei, Y.Q. (2016). Ovarian cancer treatment with a tumor-targeting and gene expressioncontrollable lipoplex. Sci Rep 6, 23764.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hille, F., and Charpentier, E. (2016). CRISPR-Cas: biology, mechanisms and relevance. Phil Trans R Soc B 371, 20150496.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jao, L.E., Wente, S.R., and Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 110, 13904–13909.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jiang, C., Mei, M., Li, B., Zhu, X., Zu, W., Tian, Y., Wang, Q., Guo, Y., Dong, Y., and Tan, X. (2017). A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res 27, 440–443.CrossRefPubMedGoogle Scholar
  23. Joung, J.K., and Sander, J.D. (2013). TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14, 49–55.CrossRefPubMedGoogle Scholar
  24. Kennedy, E.M., Bassit, L.C., Mueller, H., Kornepati, A.V.R., Bogerd, H.P., Nie, T., Chatterjee, P., Javanbakht, H., Schinazi, R.F., and Cullen, B.R. (2015). Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology 476, 196–205.CrossRefPubMedGoogle Scholar
  25. Kennedy, E.M., Kornepati, A.V.R., Goldstein, M., Bogerd, H.P., Poling, B.C., Whisnant, A.W., Kastan, M.B., and Cullen, B.R. (2014). Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol 88, 11965–11972.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kim, S., Kim, D., Cho, S.W., Kim, J., and Kim, J.S. (2014). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24, 1012–1019.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z., and Joung, J.K. (2016). High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li, H., Eishingdrelo, A., Kongsamut, S., and Eishingdrelo, H. (2016). G-protein-coupled receptors mediate 14-3-3 signal transduction. Sig Transduct Target Ther 1, 16018.CrossRefGoogle Scholar
  29. Lin, S.R., Yang, H.C., Kuo, Y.T., Liu, C.J., Yang, T.Y., Sung, K.C., Lin, Y.Y., Wang, H.Y., Wang, C.C., Shen, Y.C., Wu, F.Y., Kao, J.H., Chen, D.S., and Chen, P.J. (2014a). The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids 3, e186.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lin, Y., Cradick, T.J., Brown, M.T., Deshmukh, H., Ranjan, P., Sarode, N., Wile, B.M., Vertino, P.M., Stewart, F.J., and Bao, G. (2014b). CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42, 7473–7485.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Liu, J., and Shui, S.L. (2016). Delivery methods for site-specific nucleases: achieving the full potential of therapeutic gene editing. J Control Release 244, 83–97.CrossRefPubMedGoogle Scholar
  32. Liu, Y., Zeng, Y., Liu, L., Zhuang, C., Fu, X., Huang, W., and Cai, Z. (2014). Synthesizing AND gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells. Nat Commun 5, 5393.CrossRefPubMedGoogle Scholar
  33. Long, C., Amoasii, L., Mireault, A.A., McAnally, J.R., Li, H., Sanchez-Ortiz, E., Bhattacharyya, S., Shelton, J.M., Bassel-Duby, R., and Olson, E.N. (2016). Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400–403.CrossRefPubMedGoogle Scholar
  34. Maggio, I., Holkers, M., Liu, J., Janssen, J.M., Chen, X., and Gonçalves, M.A.F.V. (2014). Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Sci Rep 4, 5105.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mandal, P.K., Ferreira, L.M.R., Collins, R., Meissner, T.B., Boutwell, C.L., Friesen, M., Vrbanac, V., Garrison, B.S., Stortchevoi, A., Bryder, D., Musunuru, K., Brand, H., Tager, A.M., Allen, T.M., Talkowski, M.E., Rossi, D.J., and Cowan, C.A. (2014). Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell 15, 643–652.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Maruyama, T., Dougan, S.K., Truttmann, M.C., Bilate, A.M., Ingram, J.R., and Ploegh, H.L. (2015). Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33, 538–542.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mentis, A.F. (2016). Epigenomic engineering for Down syndrome. Neurosci Biobehav Rev 71, 323–327.CrossRefPubMedGoogle Scholar
  38. Munshi, N.V. (2016). CRISPR (clustered regularly interspaced palindromic repeat)/Cas9 system. Circulation 134, 777–779.CrossRefPubMedGoogle Scholar
  39. Nelson, C.E., Hakim, C.H., Ousterout, D.G., Thakore, P.I., Moreb, E.A., Castellanos Rivera, R.M., Madhavan, S., Pan, X., Ran, F.A., Yan, W.X., Asokan, A., Zhang, F., Duan, D., and Gersbach, C.A. (2016). In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403–407.CrossRefPubMedGoogle Scholar
  40. Nishimasu, H., Ran, F.A., Hsu, P.D., Konermann, S., Shehata, S.I., Dohmae, N., Ishitani, R., Zhang, F., and Nureki, O. (2014). Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., Kang, Y., Zhao, X., Si, W., Li, W., Xiang, A.P., Zhou, J., Guo, X., Bi, Y., Si, C., Hu, B., Dong, G., Wang, H., Zhou, Z., Li, T., Tan, T., Pu, X., Wang, F., Ji, S., Zhou, Q., Huang, X., Ji, W., and Sha, J. (2014). Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843.CrossRefPubMedGoogle Scholar
  42. Osakabe, Y., Watanabe, T., Sugano, S.S., Ueta, R., Ishihara, R., Shinozaki, K., and Osakabe, K. (2016). Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6, 26685.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Perez-Pinera, P., Kocak, D.D., Vockley, C.M., Adler, A.F., Kabadi, A.M., Polstein, L.R., Thakore, P.I., Glass, K.A., Ousterout, D.G., Leong, K.W., Guilak, F., Crawford, G.E., Reddy, T.E., and Gersbach, C.A. (2013). RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Meth 10, 973–976.CrossRefGoogle Scholar
  44. Ramakrishna, S., Kwaku Dad, A.B., Beloor, J., Gopalappa, R., Lee, S.K., and Kim, H. (2014). Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24, 1020–1027.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X., Makarova, K.S., Koonin, E.V., Sharp, P.A., and Zhang, F. (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Reardon, S. (2016). First CRISPR clinical trial gets green light from USpanel. Nature in press doi: 10.1038/nature.2016.20137.Google Scholar
  47. Sakuma, T., Masaki, K., Abe-Chayama, H., Mochida, K., Yamamoto, T., and Chayama, K. (2016). Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus. Genes Cells 21, 1253–1262.CrossRefPubMedGoogle Scholar
  48. Savic, N., and Schwank, G. (2016). Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res 168, 15–21.CrossRefPubMedGoogle Scholar
  49. Schumann, K., Lin, S., Boyer, E., Simeonov, D.R., Subramaniam, M., Gate, R.E., Haliburton, G.E., Ye, C.J., Bluestone, J.A., Doudna, J.A., and Marson, A. (2015). Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci USA 112, 10437–10442.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sessions, J.W., Skousen, C.S., Price, K.D., Hanks, B.W., Hope, S., Alder, J.K., and Jensen, B.D. (2016). CRISPR-Cas9 directed knock-out of a constitutively expressed gene using lance array nanoinjection. Springer-Plus 5, 1521.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S., Heckl, D., Ebert, B.L., Root, D.E., Doench, J.G., and Zhang, F. (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87.CrossRefPubMedGoogle Scholar
  52. Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X., and Zhang, F. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88.CrossRefPubMedGoogle Scholar
  53. Su, S., Hu, B., Shao, J., Shen, B., Du, J., Du, Y., Zhou, J., Yu, L., Zhang, L., Chen, F., Sha, H., Cheng, L., Meng, F., Zou, Z., Huang, X., and Liu, B. (2016). CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep 6, 20070.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Suenaga, T., Kohyama, M., Hirayasu, K., and Arase, H. (2014). Engineering large viral DNA genomes using the CRISPR-Cas9 system. Microbiol Immunol 58, 513–522.CrossRefPubMedGoogle Scholar
  55. Suresh, B., Ramakrishna, S., and Kim, H. (2017). Cell-penetrating peptidemediated delivery of Cas9 protein and guide RNA for genome editing. Methods Mol Biol 1507, 81–94.CrossRefPubMedGoogle Scholar
  56. Swiech, L., Heidenreich, M., Banerjee, A., Habib, N., Li, Y., Trombetta, J., Sur, M., and Zhang, F. (2015). In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33, 102–106.CrossRefPubMedGoogle Scholar
  57. Tabebordbar, M., Zhu, K., Cheng, J.K.W., Chew, W.L., Widrick, J.J., Yan, W.X., Maesner, C., Wu, E.Y., Xiao, R., Ran, F.A., Cong, L., Zhang, F., Vandenberghe, L.H., Church, G.M., and Wagers, A.J. (2016). In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407–411.CrossRefPubMedGoogle Scholar
  58. Tanihara, F., Takemoto, T., Kitagawa, E., Rao, S., Do, L.T.K., Onishi, A., Yamashita, Y., Kosugi, C., Suzuki, H., Sembon, S., Suzuki, S., Nakai, M., Hashimoto, M., Yasue, A., Matsuhisa, M., Noji, S., Fujimura, T., Fuchimoto, D.I., and Otoi, T. (2016). Somatic cell reprogramming-free generation of genetically modified pigs. Sci Adv 2, e1600803–e1600803.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tao, L., Zhang, J., Meraner, P., Tovaglieri, A., Wu, X., Gerhard, R., Zhang, X., Stallcup, W.B., Miao, J., He, X., Hurdle, J.G., Breault, D.T., Brass, A.L., and Dong, M. (2016). Frizzled proteins are colonic epithelial receptors for C.difficile toxin B. Nature 538, 350–355.CrossRefPubMedGoogle Scholar
  60. Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., Powderly, J.D., Carvajal, R.D., Sosman, J.A., Atkins, M.B., Leming, P.D., Spigel, D.R., Antonia, S.J., Horn, L., Drake, C.G., Pardoll, D.M., Chen, L., Sharfman, W.H., Anders, R.A., Taube, J.M., McMiller, T.L., Xu, H., Korman, A.J., Jure-Kunkel, M., Agrawal, S., McDonald, D., Kollia, G.D., Gupta, A., Wigginton, J.M., and Sznol, M. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366, 2443–2454.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Tóth, E., Weinhardt, N., Bencsura, P., Huszár, K., Kulcsár, P.I., Tálas, A., Fodor, E., and Welker, E. (2016). Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells. Biol Direct 11, 46.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Truong, D.J.J., Kü hner, K., Kü hn, R., Werfel, S., Engelhardt, S., Wurst, W., and Ortiz, O. (2015). Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res 43, 6450–6458.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Tsai, S.Q., Wyvekens, N., Khayter, C., Foden, J.A., Thapar, V., Reyon, D., Goodwin, M.J., Aryee, M.J., and Joung, J.K. (2014). Dimeric CRISPR RNA-guided Fok I nucleases for highly specific genome editing. Nat Biotechnol 32, 569–576.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S., and Gregory, P.D. (2010). Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11, 636–646.CrossRefPubMedGoogle Scholar
  65. Valletta, S., Dolatshad, H., Bartenstein, M., Yip, B.H., Bello, E., Gordon, S., Yu, Y., Shaw, J., Roy, S., Scifo, L., Schuh, A., Pellagatti, A., Fulga, T.A., Verma, A., and Boultwood, J. (2015). ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget 6, 44061–44071.PubMedPubMedCentralGoogle Scholar
  66. Wang, D., Mou, H., Li, S., Li, Y., Hough, S., Tran, K., Li, J., Yin, H., Anderson, D.G., Sontheimer, E.J., Weng, Z., Gao, G., and Xue, W. (2015). Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Therapy 26, 432–442.CrossRefGoogle Scholar
  67. Wang, L., Li, F., Dang, L., Liang, C., Wang, C., He, B., Liu, J., Li, D., Wu, X., Xu, X., Lu, A., and Zhang, G. (2016). In vivo delivery systems for therapeutic genome editing. Int J Mol Sci 17, 626.CrossRefPubMedCentralGoogle Scholar
  68. Williams, M.R., Fricano-Kugler, C.J., Getz, S.A., Skelton, P.D., Lee, J., Rizzuto, C.P., Geller, J.S., Li, M., and Luikart, B.W. (2016). A retroviral CRISPR-Cas9 system for cellular autism-associated phenotype discovery in developing neurons. Sci Rep 6, 25611.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Xie, S.L., Bian, W.P., Wang, C., Junaid, M., Zou, J.X., and Pei, D.S. (2016). A novel technique based on in vitro oocyte injection to improve CRISPR/Cas9 gene editing in zebrafish. Sci Rep 6, 34555.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Xu, L., Park, K.H., Zhao, L., Xu, J., El Refaey, M., Gao, Y., Zhu, H., Ma, J., and Han, R. (2016). CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 24, 564–569.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Xue, W., Chen, S., Yin, H., Tammela, T., Papagiannakopoulos, T., Joshi, N.S., Cai, W., Yang, G., Bronson, R., Crowley, D.G., Zhang, F., Anderson, D.G., Sharp, P.A., and Jacks, T. (2014). CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380–384.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Yang, Y., Wang, L., Bell, P., McMenamin, D., He, Z., White, J., Yu, H., Xu, C., Morizono, H., Musunuru, K., Batshaw, M.L., and Wilson, J.M. (2016). A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34, 334–338.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Yao, S., He, Z., and Chen, C. (2015). CRISPR/Cas9-mediated genome editing of epigenetic factors for cancer therapy. Hum Gene Ther 26, 463–471.CrossRefPubMedGoogle Scholar
  74. Yi, L., and Li, J. (2016). CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges. Biochim Biophys Acta 1866, 197–207.PubMedGoogle Scholar
  75. Yin, H., Song, C.Q., Dorkin, J.R., Zhu, L.J., Li, Y., Wu, Q., Park, A., Yang, J., Suresh, S., Bizhanova, A., Gupta, A., Bolukbasi, M.F., Walsh, S., Bogorad, R.L., Gao, G., Weng, Z., Dong, Y., Koteliansky, V., Wolfe, S.A., Langer, R., Xue, W., and Anderson, D.G. (2016). Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 34, 328–333.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yin, H., Xue, W., Chen, S., Bogorad, R.L., Benedetti, E., Grompe, M., Koteliansky, V., Sharp, P.A., Jacks, T., and Anderson, D.G. (2014). Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32, 551–553.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yuan, M., Gao, X., Chard, L.S., Ali, Z., Ahmed, J., Li, Y., Liu, P., Lemoine, N.R., and Wang, Y. (2015a). A marker-free system for highly efficient construction of vaccinia virus vectors using CRISPR Cas9. Mol Ther Methods Clin Dev 2, 15035.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yuan, M., Zhang, W., Wang, J., Al Yaghchi, C., Ahmed, J., Chard, L., Lemoine, N.R., and Wang, Y. (2015b). Efficiently editing the vaccinia virus genome by using the CRISPR-Cas9 system. J Virol 89, 5176–5179.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhang, D., and Li, J.F. (2016). DNA-guided genome editing tool. Sci China Life Sci 59, 740–741.CrossRefPubMedGoogle Scholar
  80. Zhang, T., Yin, Y., Liu, H., Du, W., Ren, C., Wang, L., Lu, H., and Zhang, Z. (2016). Generation of VDR knock-out mice via zygote injection of CRISPR/Cas9 system. PLoS ONE 11, e0163551.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhang, X., and Wang, S. (2016). From the first human gene-editing to the birth of three-parent baby. Sci China Life Sci 59, 1341–1342.CrossRefPubMedGoogle Scholar
  82. Zuris, J.A., Thompson, D.B., Shu, Y., Guilinger, J.P., Bessen, J.L., Hu, J.H., Maeder, M.L., Joung, J.K., Chen, Z.Y., and Liu, D.R. (2015). Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33, 73–80.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Heidelberg 2017

Authors and Affiliations

  • Zhi-Yao He
    • 1
  • Ke Men
    • 2
  • Zhou Qin
    • 1
  • Yang Yang
    • 2
  • Ting Xu
    • 1
    Email author
  • Yu-Quan Wei
    • 2
  1. 1.Department of Pharmacy, and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
  2. 2.State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina

Personalised recommendations