Science China Life Sciences

, Volume 60, Issue 5, pp 447–457 | Cite as

CRISPR/Cas9-mediated correction of human genetic disease

  • Ke MenEmail author
  • Xingmei Duan
  • Zhiyao He
  • Yang Yang
  • Shaohua Yao
  • Yuquan Wei


The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) protein 9 system (CRISPR/Cas9) provides a powerful tool for targeted genetic editing. Directed by programmable sequence-specific RNAs, this system introduces cleavage and double-stranded breaks at target sites precisely. Compared to previously developed targeted nucleases, the CRISPR/Cas9 system demonstrates several promising advantages, including simplicity, high specificity, and efficiency. Several broad genome-editing studies with the CRISPR/Cas9 system in different species in vivo and ex vivo have indicated its strong potential, raising hopes for therapeutic genome editing in clinical settings. Taking advantage of non-homologous end-joining (NHEJ) and homology directed repair (HDR)-mediated DNA repair, several studies have recently reported the use of CRISPR/Cas9 to successfully correct disease-causing alleles ranging from single base mutations to large insertions. In this review, we summarize and discuss recent preclinical studies involving the CRISPR/Cas9-mediated correction of human genetic diseases.


CRISPR/Cas9 genome editing genetic disease gene therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation (NSFC81502677, NSFC81602699, NSFC81123003), the National Key Research and Development Program of China (2016YFA0201402), and the Key Technologies R & D program of Sichuan Province (2015FZ0040).


  1. Aartsma-Rus, A., Kaman, W.E., Weij, R., den Dunnen, J.T., van Ommen, G.J.B., and van Deutekom, J.C.T. (2006). Exploring the frontiers of therapeutic exon skipping for Duchenne muscular dystrophy by double targeting within one or multiple exons. Mol Ther 14, 401–407.CrossRefPubMedGoogle Scholar
  2. Aartsma-Rus, A., Fokkema, I., Verschuuren, J., Ginjaar, I., van Deutekom, J., van Ommen, G.J., and den Dunnen, J.T. (2009). Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30, 293–299.CrossRefPubMedGoogle Scholar
  3. Aoki, Y., Yokota, T., Nagata, T., Nakamura, A., Tanihata, J., Saito, T., Duguez, S.M.R., Nagaraju, K., Hoffman, E.P., Partridge, T., and Takeda, S. (2012). Bodywide skipping of exons 45–55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci USA 109, 13763–13768.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Asokan, A., Schaffer, D.V., and Ju de Samulski, R. (2012). The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 20, 699–708.CrossRefPubMedCentralGoogle Scholar
  5. Avior, Y., Sagi, I., and Benvenisty, N. (2016). Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17, 170–182.CrossRefPubMedGoogle Scholar
  6. Azuma, H., Paulk, N., Ranade, A., Dorrell, C., Al-Dhalimy, M., Ellis, E., Strom, S., Kay, M.A., Finegold, M., and Grompe, M. (2007). Robust expansion of human hepatocytes in Fah -/-/Rag2 -/-/Il2rg -/- mice. Nat Biotechnol 25, 903–910.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bamshad, M.J., Ng, S.B., Bigham, A.W., Tabor, H.K., Emond, M.J., Nickerson, D.A., and Shendure, J. (2011). Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12, 745–755.CrossRefPubMedGoogle Scholar
  8. Bassuk, A.G., Zheng, A., Li, Y., Tsang, S.H., and Mahajan, V.B. (2016). Precision medicine: genetic repair of retinitis pigmentosa in patient-derived stem cells. Sci Rep 6, 19969.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Beckmann, J.S., Estivill, X., and Antonarakis, S.E. (2007). Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 8, 639–646.CrossRefPubMedGoogle Scholar
  10. Blasco, R.B., Karaca, E., Ambrogio, C., Cheong, T.C., Karayol, E., Minero, V.G., Voena, C., and Chiarle, R. (2014). Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep 9, 1219–1227.CrossRefPubMedGoogle Scholar
  11. Bondeson, M.L., Dahl, N., Malmgren, H., Kleijer, W.J., Tö nnesen, T., Carlberg, B.M., and Pettersson, U. (1995). Inversion of the IDS gene resulting from recombination with IDS-related sequences in a common cause of the Hunter syndrome. Hum Mol Genet 4, 615–621.CrossRefPubMedGoogle Scholar
  12. Carbery, I.D., Ji, D., Harrington, A., Brown, V., Weinstein, E.J., Liaw, L., and Cui, X. (2010). Targeted genome modification in mice using zinc-finger nucleases. Genets 186, 451–459.CrossRefGoogle Scholar
  13. Chang, C.W., Lai, Y.S., Westin, E., Khodadadi-Jamayran, A., Pawlik, K.M., Lamb Jr., L.S., Goldman, F.D., and Townes, T.M. (2015). Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep 12, 1668–1677.CrossRefPubMedGoogle Scholar
  14. Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J.W., and Xi, J.J. (2013). Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23, 465–472.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen, F., Pruett-Miller, S.M., Huang, Y., Gjoka, M., Duda, K., Taunton, J., Collingwood, T.N., Frodin, M., and Davis, G.D. (2011). High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Meth 8, 753–755.CrossRefGoogle Scholar
  16. Cheng, S.H., Gregory, R.J., Marshall, J., Paul, S., Souza, D.W., White, G.A., O’ Riordan, C.R., and Smith, A.E. (1990). Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834.CrossRefPubMedGoogle Scholar
  17. Chen, Z.G., and Zhang, Y.A. (2015). Cell therapy for macular degeneration— first phase I/II pluripotent stem cell-based clinical trial shows promise. Sci China Life Sci 58, 119–120.CrossRefPubMedGoogle Scholar
  18. Cho, S.W., Kim, S., Kim, J.M., and Kim, J.S. (2013). Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230–232.CrossRefPubMedGoogle Scholar
  19. Choi, P.S., and Meyerson, M. (2014). Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun 5, 3728.PubMedPubMedCentralGoogle Scholar
  20. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Davidoff, A.M., Gray, J.T., Ng, C.Y.C., Zhang, Y., Zhou, J., Spence, Y., Bakar, Y., and Nathwani, A.C. (2005). Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Mol Ther 11, 875–888.CrossRefPubMedGoogle Scholar
  22. Dickinson, D.J., Ward, J.D., Reiner, D.J., and Goldstein, B. (2013). Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Meth 10, 1028–1034.CrossRefGoogle Scholar
  23. Ding, Q., Strong, A., Patel, K.M., Ng, S.L., Gosis, B.S., Regan, S.N., Cowan, C.A., Rader, D.J., and Musunuru, K. (2014). Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circul Res 115, 488–492.CrossRefGoogle Scholar
  24. Filareto, A., Parker, S., Darabi, R., Borges, L., Iacovino, M., Schaaf, T., Mayerhofer, T., Chamberlain, J.S., Ervasti, J.M., McIvor, R.S., Kyba, M., and Perlingeiro, R.C.R. (2013). An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun 4, 1549.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Flynn, R., Grundmann, A., Renz, P., Hänseler, W., James, W.S., Cowley, S.A., and Moore, M.D. (2015). CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol 43, 838–848.e3.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Frazer, K.A., Murray, S.S., Schork, N.J., and Topol, E.J. (2009). Human genetic variation and its contribution to complex traits. Nat Rev Genet 10, 241–251.CrossRefPubMedGoogle Scholar
  27. Friedland, A.E., Tzur, Y.B., Esvelt, K.M., Colaiácovo, M.P., Church, G.M., and Calarco, J.A. (2013). Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Meth 10, 741–743.Google Scholar
  28. Gao, X. (2015). Model animals and their applications. Sci China Life Sci 58, 319–320.CrossRefPubMedGoogle Scholar
  29. Gilissen, C., Hoischen, A., Brunner, H.G., and Veltman, J.A. (2011). Unlocking Mendelian disease using exome sequencing. Genome Biol 12, 228.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Graw, J., Brackmann, H.H., Oldenburg, J., Schneppenheim, R., Spannagl, M., and Schwaab, R. (2005). Haemophilia A: from mutation analysis to new therapies. Nat Rev Genet 6, 488–501.CrossRefPubMedGoogle Scholar
  31. Hanna, J., Wernig, M., Markoulaki, S., Sun, C.W., Meissner, A., Cassady, J.P., Beard, C., Brambrink, T., Wu, L.C., Townes, T.M., and Jaenisch, R. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318, 1920–1923.CrossRefPubMedGoogle Scholar
  32. Hoffman, E.P., Brown Jr., R.H., and Kunkel, L.M. (1987). Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928.CrossRefPubMedGoogle Scholar
  33. Huang, X., Wang, Y., Yan, W., Smith, C., Ye, Z., Wang, J., Gao, Y., Mendelsohn, L., and Cheng, L. (2015). Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells 33, 1470–1479.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huertas, P. (2010). DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Biol 17, 11–16.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R.J., and Joung, J.K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31, 227–229.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Inagaki, K., Fuess, S., Storm, T.A., Gibson, G.A., Mctiernan, C.F., Kay, M.A., and Nakai, H. (2006). Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 14, 45–53.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jao, L.E., Wente, S.R., and Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 110, 13904–13909.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., and Doudna, J. (2013). RNAprogrammed genome editing in human cells. eLife 2, e00471.CrossRefGoogle Scholar
  39. Kay, M.A., Manno, C.S., Ragni, M.V., Larson, P.J., Couto, L.B., McClelland, A., Glader, B., Chew, A.J., Tai, S.J., Herzog, R.W., Arruda, V., Johnson, F., Scallan, C., Skarsgard, E., Flake, A.W., and High, K.A. (2000). Evidence for gene transfer and expression of factor IXin haemophilia B patients treated with an AAV vector. Nat Genet 24, 257–261.CrossRefPubMedGoogle Scholar
  40. Kimbrel, E.A., and Lanza, R. (2015). Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov 14, 681–692.CrossRefPubMedGoogle Scholar
  41. Li, H.L., Fujimoto, N., Sasakawa, N., Shirai, S., Ohkame, T., Sakuma, T., Tanaka, M., Amano, N., Watanabe, A., Sakurai, H., Yamamoto, T., Yamanaka, S., and Hotta, A. (2015). Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4, 143–154.CrossRefGoogle Scholar
  42. Li, W., Teng, F., Li, T., and Zhou, Q. (2013). Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPRCas systems. Nat Biotechnol 31, 684–686.CrossRefPubMedGoogle Scholar
  43. Lisowski, L., Dane, A.P., Chu, K., Zhang, Y., Cunningham, S.C., Wilson, E.M., Nygaard, S., Grompe, M., Alexander, I.E., and Kay, M.A. (2014). Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506, 382–386.CrossRefPubMedGoogle Scholar
  44. Long, C., McAnally, J.R., Shelton, J.M., Mireault, A.A., Bassel-Duby, R., and Olson, E.N. (2014). Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345, 1184–1188.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lu, Q.L., Yokota, T., Takeda, S., Garcia, L., Muntoni, F., and Partridge, T. (2011). The status of exon skipping as a therapeutic approach to Duchenne muscular dystrophy. Mol Ther 19, 9–15.CrossRefPubMedGoogle Scholar
  46. Maddalo, D., Manchado, E., Concepcion, C.P., Bonetti, C., Vidigal, J.A., Han, Y.C., Ogrodowski, P., Crippa, A., Rekhtman, N., de Stanchina, E., Lowe, S.W., and Ventura, A. (2014). In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516, 423–427.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mali, P., Esvelt, K.M., and Church, G.M. (2013a). Cas9 as a versatile tool for engineering biology. Nat Meth 10, 957–963.CrossRefGoogle Scholar
  48. Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church, G.M. (2013b). RNA-guided human genome engineering via Cas9. Science 339, 823–826.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Manno, C.S., Pierce, G.F., Arruda, V.R., Glader, B., Ragni, M., Rasko, J.J., Rasko, J., Ozelo, M.C., Hoots, K., Blatt, P., Konkle, B., Dake, M., Kaye, R., Razavi, M., Zajko, A., Zehnder, J., Rustagi, P.K., Nakai, H., Chew, A., Leonard, D., Wright, J.F., Lessard, R.R., Sommer, J.M., Tigges, M., Sabatino, D., Luk, A., Jiang, H., Mingozzi, F., Couto, L., Ertl, H.C., High, K.A., and Kay, M.A. (2006). Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12, 342–347.CrossRefPubMedGoogle Scholar
  50. Mingozzi, F., and High, K.A. (2011). Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 12, 341–355.CrossRefPubMedGoogle Scholar
  51. Morrissey, D.V., Lockridge, J.A., Shaw, L., Blanchard, K., Jensen, K., Breen, W., Hartsough, K., Machemer, L., Radka, S., Jadhav, V., Vaish, N., Zinnen, S., Vargeese, C., Bowman, K., Shaffer, C.S., Jeffs, L.B., Judge, A., MacLachlan, I., and Polisky, B. (2005). Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23, 1002–1007.CrossRefPubMedGoogle Scholar
  52. Mukherjee, S., and Thrasher, A.J. (2011). iPSCs: unstable origins? Mol Ther 19, 1188–1190.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nathwani, A.C., Gray, J.T., Ng, C.Y.C., Zhou, J., Spence, Y., Waddington, S.N., Tuddenham, E.G.D., Kemball-Cook, G., McIntosh, J., Boon-Spijker, M., Mertens, K., and Davidoff, A.M. (2006). Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 107, 2653–2661.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nathwani, A.C., Tuddenham, E.G.D., Rangarajan, S., Rosales, C., McIntosh, J., Linch, D.C., Chowdary, P., Riddell, A., Pie, A.J., Harrington, C., O’Beirne, J., Smith, K., Pasi, J., Glader, B., Rustagi, P., Ng, C.Y.C., Kay, M.A., Zhou, J., Spence, Y., Morton, C.L., Allay, J., Coleman, J., Sleep, S., Cunningham, J.M., Srivastava, D., Basner-Tschakarjan, E., Mingozzi, F., High, K.A., Gray, J.T., Reiss, U.M., Nienhuis, A.W., and Davidoff, A.M. (2011). Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 365, 2357–2365.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nikiforova, M.N., Stringer, J.R., Blough, R., Medvedovic, M., Fagin, J.A., and Nikiforov, Y.E. (2000). Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141.CrossRefPubMedGoogle Scholar
  56. Okada, T., and Takeda, S. (2013). Current challenges and future directions in recombinant AAV-mediated gene therapy of Duchenne muscular dystrophy. Pharmaceuticals 6, 813–836.CrossRefPubMedCentralGoogle Scholar
  57. Olivares, E.C., Hollis, R.P., Chalberg, T.W., Meuse, L., Kay, M.A., and Calos, M.P. (2002). Site-specific genomic integration produces therapeutic factor IX levels in mice. Nat Biotech 20, 1124–1128.CrossRefGoogle Scholar
  58. Ott, J., Kamatani, Y., and Lathrop, M. (2011). Family-based designs for genome-wide association studies. Nat Rev Genet 12, 465–474.CrossRefPubMedGoogle Scholar
  59. Ousterout, D.G., Kabadi, A.M., Thakore, P.I., Majoros, W.H., Reddy, T.E., and Gersbach, C.A. (2015). Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 6, 6244.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Park, C.Y., Kim, D.H., Son, J.S., Sung, J.J., Lee, J., Bae, S., Kim, J.H., Kim, D.W., and Kim, J.S. (2015). Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17, 213–220.CrossRefPubMedGoogle Scholar
  61. Park, I.H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M.W., Cowan, C., Hochedlinger, K., and Daley, G.Q. (2008). Disease-specific induced pluripotent stem cells. Cell 134, 877–886.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Paulk, N.K., Wursthorn, K., Wang, Z., Finegold, M.J., Kay, M.A., and Grompe, M. (2010). Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo. Hepatology 51, 1200–1208.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pichavant, C., Aartsma-Rus, A., Clemens, P.R., Davies, K.E., Dickson, G., Takeda, S., Wilton, S.D., Wolff, J.A., Wooddell, C.I., Xiao, X., and Tremblay, J.P. (2011). Current status of pharmaceutical and genetic therapeutic approaches to treat DMD. Mol Ther 19, 830–840.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Piras, B.A., Drury, J.E., Morton, C.L., Spence, Y., Lockey, T.D., Nathwani, A.C., Davidoff, A.M., and Meagher, M.M. (2016). Distribution of AAV8 particles in cell lysates and culture media changes with time and is dependent on the recombinant vector. Mol Ther Methods Clin Dev 3, 16015.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pirazzoli, V., Nebhan, C., Song, X., Wurtz, A., Walther, Z., Cai, G., Zhao, Z., Jia, P., de Stanchina, E., Shapiro, E.M., Gale, M., Yin, R., Horn, L., Carbone, D.P., Stephens, P.J., Miller, V., Gettinger, S., Pao, W., and Politi, K. (2014). Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1. Cell Rep 7, 999–1008.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Platt, R.J., Chen, S., Zhou, Y., Yim, M.J., Swiech, L., Kempton, H.R., Dahlman, J.E., Parnas, O., Eisenhaure, T.M., Jovanovic, M., Graham, D.B., Jhunjhunwala, S., Heidenreich, M., Xavier, R.J., Langer, R., Anderson, D.G., Hacohen, N., Regev, A., Feng, G., Sharp, P.A., and Zhang, F. (2014). CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Porteus, M.H., and Dann, C.T. (2015). Genome editing of the germline: broadening the discussion. Mol Ther 23, 980–982.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X., Makarova, K.S., Koonin, E.V., Sharp, P.A., and Zhang, F. (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Raya, A., Rodríguez-Pizà, I., Guenechea, G., Vassena, R., Navarro, S., Barrero, M.J., Consiglio, A., Castellà, M., Río, P., Sleep, E., González, F., Tiscornia, G., Garreta, E., Aasen, T., Veiga, A., Verma, I.M., Surrallés, J., Bueren, J., and Izpisúa Belmonte, J.C. (2009). Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460, 53–59.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Robinton, D.A., and Daley, G.Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature 481, 295–305.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Savic, N., and Schwank, G. (2016). Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res 168, 15–21.CrossRefPubMedGoogle Scholar
  72. Schwank, G., Koo, B.K., Sasselli, V., Dekkers, J.F., Heo, I., Demircan, T., Sasaki, N., Boymans, S., Cuppen, E., van der Ent, C.K., Nieuwenhuis, E.E.S., Beekman, J.M., and Clevers, H. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658.CrossRefPubMedGoogle Scholar
  73. Sebestyén, M.G., Budker, V.G., Budker, T., Subbotin, V.M., Zhang, G., Monahan, S.D., Lewis, D.L., Wong, S.C., Hagstrom, J.E., and Wolff, J.A. (2006). Mechanism of plasmid delivery by hydrodynamic tail vein injection. I. Hepatocyte uptake of various molecules. J Gene Med 8, 852–873.PubMedGoogle Scholar
  74. Sharpless, N.E., and Depinho, R.A. (2006). The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5, 741–754.CrossRefPubMedGoogle Scholar
  75. Shinmyo, Y., Tanaka, S., Tsunoda, S., Hosomichi, K., Tajima, A., and Kawasaki, H. (2016). CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation. Sci Rep 6, 20611.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Smith, K.R. (2004). Gene therapy: the potential applicability of gene transfer technology to the human germline. Int J Med Sci 1, 76–91.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Song, B., Fan, Y., He, W., Zhu, D., Niu, X., Wang, D., Ou, Z., Luo, M., and Sun, X. (2015). Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev 24, 1053–1065.CrossRefPubMedGoogle Scholar
  78. Suda, T., and Liu, D. (2007). Hydrodynamic gene delivery: its principles and applications. Mol Ther 15, 2063–2069.CrossRefPubMedGoogle Scholar
  79. Swiech, L., Heidenreich, M., Banerjee, A., Habib, N., Li, Y., Trombetta, J., Sur, M., and Zhang, F. (2015). In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33, 102–106.CrossRefPubMedGoogle Scholar
  80. Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.CrossRefPubMedGoogle Scholar
  81. Trounson, A., and De Witt, N.D. (2016). Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol 17, 194–200.CrossRefPubMedGoogle Scholar
  82. Veltman, J.A., and Brunner, H.G. (2012). De novo mutations in human genetic disease. Nat Rev Genet 13, 565–575.CrossRefPubMedGoogle Scholar
  83. Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., and Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Weiner, A., Zauberman, N., and Minsky, A. (2009). Recombinational DNA repair in a cellular context: a search for the homology search. Nat Rev Micro 7, 748–755.CrossRefGoogle Scholar
  85. Wu, Y., Liang, D., Wang, Y., Bai, M., Tang, W., Bao, S., Yan, Z., Li, D., and Li, J. (2013). Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13, 659–662.CrossRefPubMedGoogle Scholar
  86. Xie, F., Ye, L., Chang, J.C., Beyer, A.I., Wang, J., Muench, M.O., and Kan, Y.W. (2014). Seamleßs gene correction of ß-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res 24, 1526–1533.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Xu, L., Park, K.H., Zhao, L., Xu, J., El Refaey, M., Gao, Y., Zhu, H., Ma, J., and Han, R. (2016). CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 24, 564–569.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yang, H., Wang, H., Shivalila, C.S., Cheng, A.W., Shi, L., and Jaenisch, R. (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370–1379.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Yang, Y., Wang, L., Bell, P., McMenamin, D., He, Z., White, J., Yu, H., Xu, C., Morizono, H., Musunuru, K., Batshaw, M.L., and Wilson, J.M. (2016a). A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34, 334–338.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yang, Y., Zhang, X., Yi, L., Hou, Z., Chen, J., Kou, X., Zhao, Y., Wang, H., Sun, X.F., Jiang, C., Wang, Y., and Gao, S. (2016b). Naïve induced pluripotent stem cells generated from ß-thalassemia fibroblasts allow efficient gene correction with CRISPR/Cas9. Stem Cell Transl Med 5, 8–19.CrossRefGoogle Scholar
  91. Yin, H., Xue, W., Chen, S., Bogorad, R.L., Benedetti, E., Grompe, M., Koteliansky, V., Sharp, P.A., Jacks, T., and Anderson, D.G. (2014). Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32, 551–553.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Yoshimi, K., Kaneko, T., Voigt, B., and Mashimo, T. (2014). Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform. Nat Commun 5, 4240.PubMedPubMedCentralGoogle Scholar
  93. Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I., and Thomson, J.A. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920.CrossRefPubMedGoogle Scholar
  94. Yu, Z., Ren, M., Wang, Z., Zhang, B., Rong, Y.S., Jiao, R., and Gao, G. (2013). Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genets 195, 289–291.CrossRefGoogle Scholar
  95. Zhang, D., and Li, J.F. (2016). DNA-guided genome editing tool. Sci China Life Sci 59, 740–741.CrossRefPubMedGoogle Scholar
  96. Zhang, D., Li, Z., Yan, B., and Li, J.F. (2016). A novel RNA-guided RNAtargeting CRISPR tool. Sci China Life Sci 59, 854–856.CrossRefPubMedGoogle Scholar
  97. Zhang, X., and Wang, S. (2016). From the first human gene-editing to the birth of three-parent baby. Sci China Life Sci 59, 1341–1342.CrossRefPubMedGoogle Scholar
  98. Zincarelli, C., Soltys, S., Rengo, G., and Rabinowitz, J.E. (2008). Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16, 1073–1080.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Heidelberg 2017

Authors and Affiliations

  • Ke Men
    • 1
    Email author
  • Xingmei Duan
    • 1
    • 2
  • Zhiyao He
    • 3
  • Yang Yang
    • 1
  • Shaohua Yao
    • 1
  • Yuquan Wei
    • 1
  1. 1.State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China HospitalSichuan UniversityChengduChina
  2. 2.Individualized Medication Key Laboratory of Sichuan Province, Department of Pharmacy, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People’s HospitalSichuan Translational Medicine HospitalChengduChina
  3. 3.Department of Pharmacy, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina

Personalised recommendations