Advertisement

Science China Life Sciences

, Volume 60, Issue 5, pp 490–505 | Cite as

Current and future editing reagent delivery systems for plant genome editing

  • Yidong Ran
  • Zhen Liang
  • Caixia Gao
Review

Abstract

Many genome editing tools have been developed and new ones are anticipated; some have been extensively applied in plant genetics, biotechnology and breeding, especially the CRISPR/Cas9 system. These technologies have opened up a new era for crop improvement due to their precise editing of user-specified sequences related to agronomic traits. In this review, we will focus on an update of recent developments in the methodologies of editing reagent delivery, and consider the pros and cons of current delivery systems. Finally, we will reflect on possible future directions.

Keywords

genome editing DNA RNA RNP and virus delivery Agrobacterium-mediated transformation biolistic method protoplast transfection ttransgene-free genome edited plant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alagoz, Y., Gurkok, T., Zhang, B., and Unver, T. (2016). Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci Rep 6, 30910.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ainley, W.M., Sastry-Dent, L., Welter, M.E., Murray, M.G., Zeitler, B., Amora, R., Corbin, D.R., Miles, R.R., Arnold, N.L., Strange, T.L., Simpson, M.A., Cao, Z., Carroll, C., Pawelczak, K.S., Blue, R., West, K., Rowland, L.M., Perkins, D., Samuel, P., Dewes, C.M., Shen, L., Sriram, S., Evans, S.L., Rebar, E.J., Zhang, L., Gregory, P.D., Urnov, F.D., Webb, S.R., and Petolino, J.F. (2013). Trait stacking via targeted genome editing. Plant Biotechnol J 11, 1126–1134.PubMedCrossRefGoogle Scholar
  3. Ali, Z., Abul-faraj, A., Li, L., Ghosh, N., Piatek, M., Mahjoub, A., Aouida, M., Piatek, A., Baltes, N.J., Voytas, D.F., Dinesh-Kumar, S., and Mahfouz, M.M. (2015). Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant 8, 1288–1291.PubMedCrossRefGoogle Scholar
  4. Altpeter, F., Springer, N.M., Bartley, L.E., Blechl, A.E., Brutnell, T.P., Citovsky, V., Conrad, L.J., Gelvin, S.B., Jackson, D.P., Kausch, A.P., Lemaux, P.G., Medford, J.I., Orozco-Cárdenas, M.L., Tricoli, D.M., Van Eck, J., Voytas, D.F., Walbot, V., Wang, K., Zhang, Z.J., and Stewart, C.N. (2016). Advancing crop transformation in the era of genome editing. Plant Cell 28, 1510–1520.PubMedPubMedCentralGoogle Scholar
  5. Andersson, M., Turesson, H., Nicolia, A., Fält, A.S., Samuelsson, M., and Hofvander, P. (2017). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36, 117–128.PubMedCrossRefGoogle Scholar
  6. Baltes, N.J., Gil-Humanes, J., Cermak, T., Atkins, P.A., and Voytas, D.F. (2014). DNA replicons for plant genome engineering. Plant Cell 26, 151–163.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Belhaj, K., Chaparro-Garcia, A., Kamoun, S., and Nekrasov, V. (2013). Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9, 39.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Beetham, P.R., Kipp, P.B., Sawycky, X.L., Arntzen, C.J., and May, G.D. (1999). A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci USA 96, 8774–8778.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bortesi, L., and Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotech Adv 33, 41–52.CrossRefGoogle Scholar
  10. Brooks, C., Nekrasov, V., Lippman, Z.B., and Van Eck, J. (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166, 1292–1297.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Butler, N.M., Atkins, P.A., Voytas, D.F., and Douches, D.S. (2015). Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS ONE 10, e0144591.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cai, Y., Chen, L., Liu, X., Sun, S., Wu, C., Jiang, B., Han, T., and Hou, W. (2015). CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE 10, e0136064.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cai, C.Q., Doyon, Y., Ainley, W.M., Miller, J.C., Dekelver, R.C., Moehle, E.A., Rock, J.M., Lee, Y.L., Garrison, R., Schulenberg, L., Blue, R., Worden, A., Baker, L., Faraji, F., Zhang, L., Holmes, M.C., Rebar, E.J., Collingwood, T.N., Rubin-Wilson, B., Gregory, P.D., Urnov, F.D., and Petolino, J.F. (2009). Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol 69, 699–709.PubMedCrossRefGoogle Scholar
  14. Cao, M.X., Huang, J.Q., Yao, Q.H., Liu, S.J., Wang, C.L., and Wei, Z.M. (2006). Site-specific DNA excision in transgenic rice with a cell-permeable cre recombinase. Mol Biotechnol 32, 055–064.CrossRefGoogle Scholar
  15. Čermák, T., Baltes, N.J., Čegan, R., Zhang, Y., and Voytas, D.F. (2015). High-frequency, precise modification of the tomato genome. Genome Biol 16, 232.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T., and Gal-On, A. (2016). Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17, 1140–1153.PubMedCrossRefGoogle Scholar
  17. Char, S.N., Unger-Wallace, E., Frame, B., Briggs, S.A., Main, M., Spalding, M.H., Vollbrecht, E., Wang, K., and Yang, B. (2015). Heritable sitespecific mutagenesis using TALENs in maize. Plant Biotechnol J 13, 1002–1010.PubMedCrossRefGoogle Scholar
  18. Chugh, A., Eudes, F., and Shim, Y.S. (2010). Cell-penetrating peptides: nanocarrier for macromolecule delivery in living cells. IUBMB Life 62, 183–193.PubMedCrossRefGoogle Scholar
  19. Clasen, B.M., Stoddard, T.J., Luo, S., Demorest, Z.L., Li, J., Cedrone, F., Tibebu, R., Davison, S., Ray, E.E., Daulhac, A., Coffman, A., Yabandith, A., Retterath, A., Haun, W., Baltes, N.J., Mathis, L., Voytas, D.F., and Zhang, F. (2016). Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14, 169–176.PubMedCrossRefGoogle Scholar
  20. Cole-Strauss, A., Yoon, K., Xiang, Y., Byrne, B.C., Rice, M.C., Gryn, J., Holloman, W.K., and Kmiec, E.B. (1996). Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science 273, 1386–1389.PubMedCrossRefGoogle Scholar
  21. Curtin, S.J., Zhang, F., Sander, J.D., Haun, W.J., Starker, C., Baltes, N.J., Reyon, D., Dahlborg, E.J., Goodwin, M.J., Coffman, A.P., Dobbs, D., Joung, J.K., Voytas, D.F., and Stupar, R.M. (2011). Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156, 466–473.PubMedPubMedCentralCrossRefGoogle Scholar
  22. de Pater, S., Neuteboom, L.W., Pinas, J.E., Hooykaas, P.J.J., and van der Zaal, B.J. (2009). ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation. Plant Biotech J 7, 821–835.CrossRefGoogle Scholar
  23. de Pater, S., Pinas, J.E., Hooykaas, P.J.J., and van der Zaal, B.J. (2013). ZFNmediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation. Plant Biotechnol J 11, 510–515.PubMedCrossRefGoogle Scholar
  24. Dinesh-Kumar, S.P., Anandalakshmi, R., Marathe, R., Schiff, M., and Liu, Y. (2003). Virus-induced gene silencing. Methods Mol Biol 236, 287–294.PubMedGoogle Scholar
  25. Dong, C., Beetham, P., Vincent, K., and Sharp, P. (2006). Oligonucleotidedirected gene repair in wheat using a transient plasmid gene repair assay system. Plant Cell Rep 25, 457–465.PubMedCrossRefGoogle Scholar
  26. Du, J., Jin, J., Yan, M., and Lu, Y. (2012). Synthetic nanocarriers for intracellular protein delivery. Curr Drug Metab 13, 82–92.PubMedCrossRefGoogle Scholar
  27. Du, H., Zeng, X., Zhao, M., Cui, X., Wang, Q., Yang, H., Cheng, H., and Yu, D. (2016). Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotech 217, 90–97.CrossRefGoogle Scholar
  28. English, J., Davenport, G., Elmayan, T., Vaucheret, H., and Baulcombe, D. (1997). Requirement of sense transcription for homology-dependent virus resistance and trans-inactivation. Plant J 12, 597–603.CrossRefGoogle Scholar
  29. Fan, D., Liu, T., Li, C., Jiao, B., Li, S., Hou, Y., and Luo, K. (2015). Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5, 12217.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fauser, F., Schiml, S., and Puchta, H. (2014). Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79, 348–359.PubMedCrossRefGoogle Scholar
  31. Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y., and Zhu, J.K. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23, 1229–1232.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D.L., Wang, Z., Zhang, Z., Zheng, R., Yang, L., Zeng, L., Liu, X., and Zhu, J.K. (2014). Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111, 4632–4637.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Forner, J., Pfeiffer, A., Langenecker, T., Manavella, P.A., Manavella, P., and Lohmann, J.U. (2015). Germline-transmitted genome editing in Arabidopsis thaliana using TAL-effector-nucleases. PLoS ONE 10, e0121056.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Forsyth, A., Weeks, T., Richael, C., and Duan, H. (2016). Transcription activator-like effector nucleases (TALEN)-mediated targeted DNA insertion in potato plants. Front Plant Sci 7, 1572.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., Wu, Y., Zhao, P., and Xia, Q. (2015). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87, 99–110.PubMedCrossRefGoogle Scholar
  36. Gelvin, S.B. (2003). Agrobacterium-mediated plant transformation: the biology behind the “Gene-Jockeying” tool. Microbiol Mol Biol Rev 67, 16–37.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gil-Humanes, J., Wang, Y., Liang, Z., Shan, Q., Ozuna, C.V., Sánchez-León, S., Baltes, N.J., Starker, C., Barro, F., Gao, C., and Voytas, D.F. (2017). High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89, 1251–1262.PubMedCrossRefGoogle Scholar
  38. Gupta, M., DeKelver, R.C., Palta, A., Clifford, C., Gopalan, S., Miller, J.C., Novak, S., Desloover, D., Gachotte, D., Connell, J., Flook, J., Patterson, T., Robbins, K., Rebar, E.J., Gregory, P.D., Urnov, F.D., and Petolino, J.F. (2012). Transcriptional activation of Brassica napus β-ketoacyl-ACP synthase II with an engineered zinc finger protein transcription factor. Plant Biotech J 10, 783–791.CrossRefGoogle Scholar
  39. Gurushidze, M., Hensel, G., Hiekel, S., Schedel, S., Valkov, V., and Kumlehn, J. (2014). True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLoS ONE 9, e92046.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hartung, F., and Schiemann, J. (2014). Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78, 742–752.PubMedCrossRefGoogle Scholar
  41. Haun, W., Coffman, A., Clasen, B.M., Demorest, Z.L., Lowy, A., Ray, E., Retterath, A., Stoddard, T., Juillerat, A., Cedrone, F., Mathis, L., Voytas, D.F., and Zhang, F. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12, 934–940.PubMedCrossRefGoogle Scholar
  42. Huang, Y.W., Lee, H.J., Tolliver, L.M., and Aronstam, R.S. (2015). Delivery of nucleic acids and nanomaterials by cell-penetrating peptides: opportunities and challenges. BioMed Res Int 2015, 1–16.Google Scholar
  43. Ito, Y., Nishizawa-Yokoi, A., Endo, M., Mikami, M., and Toki, S. (2015). CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467, 76–82.PubMedCrossRefGoogle Scholar
  44. Jacobs, T.B., LaFayette, P.R., Schmitz, R.J., and Parrott, W.A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15, 16.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jensen, S.P., Febres, V.J., and Moore, G.A. (2014). Cell penetrating peptides as an alternative transformation method in citrus. J Citrus Pathol 1, 10.15.Google Scholar
  46. Jia, H., and Wang, N. (2014a). Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 9, e93806.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jia, H., and Wang, N. (2014b). Xcc-facilitated agroinfiltration of citrus leaves: a tool for rapid functional analysis of transgenes in citrus leaves. Plant Cell Rep 33, 1993–2001.PubMedCrossRefGoogle Scholar
  48. Jia, H., Orbovic, V., Jones, J.B., and Wang, N. (2016). Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCsLOB1.3 infection. Plant Biotechnol J 14, 1291–1301.PubMedCrossRefGoogle Scholar
  49. Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., and Weeks, D.P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41, e188.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Jiang, W.Z., Yang, B., and Weeks, D.P. (2014). Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS ONE 9, e99225.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jung, J.H., and Altpeter, F. (2016). TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol 92, 131–142.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kapila, J., De Rycke, R., Van Montagu, M., and Angenon, G. (1997). An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122, 101–108.CrossRefGoogle Scholar
  53. Kelley, M.L., Strezoska,, He, K., Vermeulen, A., and Smith, A.B. (2016). Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing. J Biotech 233, 74–83.CrossRefGoogle Scholar
  54. Kumagai, M.H., Donson, J., della-Cioppa, G., Harvey, D., Hanley, K., and Grill, L.K. (1995). Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci USA 92, 1679–1683.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lawrenson, T., Shorinola, O., Stacey, N., Li, C., Østergaard, L., Patron, N., Uauy, C., and Harwood, W. (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16, 258.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Li, J.F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M., and Sheen, J. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31, 688–691.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Li, J., Stoddard, T.J., Demorest, Z.L., Lavoie, P.O., Luo, S., Clasen, B.M., Cedrone, F., Ray, E.E., Coffman, A.P., Daulhac, A., Yabandith, A., Retterath, A.J., Mathis, L., Voytas, D.F., D’Aoust, M.A., and Zhang, F. (2016). Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production. Plant Biotechnol J 14, 533–542.PubMedCrossRefGoogle Scholar
  58. Li, T., Liu, B., Spalding, M.H., Weeks, D.P., and Yang, B. (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30, 390–392.PubMedCrossRefGoogle Scholar
  59. Li, T., Liu, B., Chen, C.Y., and Yang, B. (2016). TALEN-mediated homologous recombination produces site-directed DNA base change and herbicide- resistant rice. J Genet Genomics 43, 297–305.PubMedCrossRefGoogle Scholar
  60. Li, Z., Liu, Z.B., Xing, A., Moon, B.P., Koellhoffer, J.P., Huang, L., Ward, R.T., Clifton, E., Falco, S.C., and Cigan, A.M. (2015). Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169, 960–970.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Liang, Z., Zhang, K., Chen, K., and Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41, 63–68.PubMedCrossRefGoogle Scholar
  62. Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y., and Gao, C. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8, 14261.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lloyd, A., Plaisier, C.L., Carroll, D., and Drews, G.N. (2005). Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102, 2232–2237.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lor, V.S., Starker, C.G., Voytas, D.F., Weiss, D., and Olszewski, N.E. (2014). Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases. Plant Physiol 166, 1288–1291.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lowe, K., Wu, E., Wang, N., Hoerster, G., Hastings, C., Cho, M.J., Scelonge, C., Lenderts, B., Chamberlin, M., Cushatt, J., Wang, L., Ryan, L., Khan, T., Chow-Yiu, J., Hua, W., Yu, M., Banh, J., Bao, Z., Brink, K., Igo, E., Rudrappa, B., Shamseer, P.M., Bruce, W., Newman, L., Shen, B., Zheng, P., Bidney, D., Falco, S.C., RegisterIII, J.C., Zhao, Z.Y., Xu, D., Jones, T.J., and Gordon-Kamm, W.J. (2016). Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015.PubMedCentralCrossRefGoogle Scholar
  66. Luo, S., Li, J., Stoddard, T.J., Baltes, N.J., Demorest, Z.L., Clasen, B.M., Coffman, A., Retterath, A., Mathis, L., Voytas, D.F., and Zhang, F. (2015). Non-transgenic plant genome editing using purified sequence- specific nucleases. Mol Plant 8, 1425–1427.PubMedCrossRefGoogle Scholar
  67. Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., Lin, Y., Xie, Y., Shen, R., Chen, S., Wang, Z., Chen, Y., Guo, J., Chen, L., Zhao, X., Dong, Z., and Liu, Y.G. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicotplants. Mol Plant 8, 1274–1284.PubMedCrossRefGoogle Scholar
  68. Mahfouz, M.M., Li, L., Shamimuzzaman, M., Wibowo, A., Fang, X., and Zhu, J.K. (2011). De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 108, 2623–2628.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Malnoy, M., Viola, R., Jung, M.H., Koo, O.J., Kim, S., Kim, J.S., Velasco, R., and Nagamangala Kanchiswamy, C. (2016). DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7, 1904.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mao, Y., Zhang, H., Xu, N., Zhang, B., Gou, F., and Zhu, J.K. (2013). Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6, 2008–2011.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Martin-Ortigosa, S., Valenstein, J.S., Lin, V.S.Y., Trewyn, B.G., and Wang, K. (2012). Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22, 3576–3582.CrossRefGoogle Scholar
  72. Martin-Ortigosa, S., Peterson, D.J., Valenstein, J.S., Lin, V.S.Y., Trewyn, B.G., Lyznik, L.A., and Wang, K. (2014). Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164, 537–547.PubMedCrossRefGoogle Scholar
  73. Marton, I., Zuker, A., Shklarman, E., Zeevi, V., Tovkach, A., Roffe, S., Ovadis, M., Tzfira, T., and Vainstein, A. (2010). Nontransgenic genome modification in plant cells. Plant Physiol 154, 1079–1087.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H., and Qu, L.J. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23, 1233–1236.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mikami, M., Toki, S., and Endo, M. (2015). Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol 88, 561–572.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mikami, M., Toki, S., and Endo, M. (2016). Precision targeted mutagenesis via Cas9 paired nickases in rice. Plant Cell Physiol 57, 1058–1068.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D.G., and Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 691–693.PubMedCrossRefGoogle Scholar
  78. Nicolia, A., Proux-Wéra, E., Åhman, I., Onkokesung, N., Andersson, M., Andreasson, E., and Zhu, L.H. (2015). Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. J Biotech 204, 17–24.CrossRefGoogle Scholar
  79. Okuzaki, A., and Toriyama, K. (2004). Chimeric RNA/DNA oligonucleotide-directed gene targeting in rice. Plant Cell Rep 22, 509–512.PubMedCrossRefGoogle Scholar
  80. Osakabe, K., Osakabe, Y., and Toki, S. (2010). Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci USA 107, 12034–12039.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Paul, J.W., and Qi, Y. (2016). CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects. Plant Cell Rep 35, 1417–1427.PubMedCrossRefGoogle Scholar
  82. Peer, R., Rivlin, G., Golobovitch, S., Lapidot, M., Gal-On, A., Vainstein, A., Tzfira, T., and Flaishman, M.A. (2015). Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees. Planta 241, 941–951.PubMedCrossRefGoogle Scholar
  83. Petolino, J.F. (2015). Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Biol-Plant 51, 1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Piatek, A., Ali, Z., Baazim, H., Li, L., Abulfaraj, A., Al-Shareef, S., Aouida, M., and Mahfouz, M.M. (2015). RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13, 578–589.PubMedCrossRefGoogle Scholar
  85. Popat, A., Hartono, S.B., Stahr, F., Liu, J., Qiao, S.Z., and Qing (Max) Lu, G. (2011). Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale 3, 2801–2818.PubMedCrossRefGoogle Scholar
  86. Pratt, S. Growers to see new HT canola in 2016. The Western Producer. 2012-05-28. http://www.producer.com/2014/03/growers-to-see-new-htcanola-in-2016/.Google Scholar
  87. Qi, Y., Zhang, Y., Zhang, F., Baller, J.A., Cleland, S.C., Ryu, Y., Starker, C.G., and Voytas, D.F. (2013a). Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res 23, 547–554.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Qi, Y., Li, X., Zhang, Y., Starker, C.G., Baltes, N.J., Zhang, F., Sander, J.D., Reyon, D., Joung, J.K., and Voytas, D.F. (2013b). Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 3, 1707–1715.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Raitskin, O., and Patron, N.J. (2016). Multi-gene engineering in plants with RNA-guided Cas9 nuclease. Curr Opin Biotech 37, 69–75.PubMedCrossRefGoogle Scholar
  90. Rakoczy-Trojanowska, M. (2002). Alternative methods of plant transformation: a short review. Cell Mol Biol Lett 7, 849–858.PubMedGoogle Scholar
  91. Ren, C., Liu, X., Zhang, Z., Wang, Y., Duan, W., Li, S., and Liang, Z. (2016). CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6, 32289.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rinaldo, A.R., and Ayliffe, M. (2015). Gene targeting and editing in crop plants: a new era of precision opportunities. Mol Breeding 35, 40.CrossRefGoogle Scholar
  93. Sauer, N.J., Narváez-Vásquez, J., Mozoruk, J., Miller, R.B., Warburg, Z.J., Woodward, M.J., Mihiret, Y.A., Lincoln, T.A., Segami, R.E., Sanders, S.L., Walker, K.A., Beetham, P.R., Schöpke, C.R., and Gocal, G.F.W. (2016). Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 170, 1917–1928.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Schaeffer, S.M., and Nakata, P.A. (2015). CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field. Plant Sci 240, 130–142.PubMedCrossRefGoogle Scholar
  95. Schiml, S., Fauser, F., and Puchta, H. (2014). The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80, 1139–1150.PubMedCrossRefGoogle Scholar
  96. Shan, Q., Wang, Y., Chen, K., Liang, Z., Li, J., Zhang, Y., Zhang, K., Liu, J., Voytas, D.F., Zheng, X., Zhang, Y., and Gao, C. (2013a). Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant 6, 1365–1368.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L., and Gao, C. (2013b). Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31, 686–688.PubMedCrossRefGoogle Scholar
  98. Shan, Q., Zhang, Y., Chen, K., Zhang, K., and Gao, C. (2015). Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13, 791–800.PubMedCrossRefGoogle Scholar
  99. Shi, J., Gao, H., Wang, H., Lafitte, H.R., Archibald, R.L., Yang, M., Hakimi, S.M., Mo, H., and Habben, J.E. (2017). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15, 207–216.PubMedCrossRefGoogle Scholar
  100. Shukla, V.K., Doyon, Y., Miller, J.C., DeKelver, R.C., Moehle, E.A., Worden, S.E., Mitchell, J.C., Arnold, N.L., Gopalan, S., Meng, X., Choi, V.M., Rock, J.M., Wu, Y.Y., Katibah, G.E., Zhifang, G., McCaskill, D., Simpson, M.A., Blakeslee, B., Greenwalt, S.A., Butler, H.J., Hinkley, S.J., Zhang, L., Rebar, E.J., Gregory, P.D., and Urnov, F.D. (2009). Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459, 437–441.PubMedCrossRefGoogle Scholar
  101. Stoddard, T.J., Clasen, B.M., Baltes, N.J., Demorest, Z.L., Voytas, D.F., Zhang, F., and Luo, S. (2016). Targeted mutagenesis in plant cells through transformation of sequence-specific nuclease mRNA. PLoS ONE 11, e0154634.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Sugano, S.S., Shirakawa, M., Takagi, J., Matsuda, Y., Shimada, T., Hara-Nishimura, I., and Kohchi, T. (2014). CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L.. Plant Cell Physiol 55, 475–481.PubMedCrossRefGoogle Scholar
  103. Sun, X., Hu, Z., Chen, R., Jiang, Q., Song, G., Zhang, H., and Xi, Y. (2015). Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5, 10342.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Svitashev, S., Young, J.K., Schwartz, C., Gao, H., Falco, S.C., and Cigan, A.M. (2015). Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169, 931–945.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Svitashev, S., Schwartz, C., Lenderts, B., Young, J.K., and Mark Cigan, A. (2016). Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7, 13274.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Torney, F., Trewyn, B.G., Lin, V.S.Y., and Wang, K. (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotech 2, 295–300.CrossRefGoogle Scholar
  107. Tovkach, A., Zeevi, V., and Tzfira, T. (2009). A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells. Plant J 57, 747–757.PubMedCrossRefGoogle Scholar
  108. Townsend, J.A., Wright, D.A., Winfrey, R.J., Fu, F., Maeder, M.L., Joung, J.K., and Voytas, D.F. (2009). High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459, 442–445.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Upadhyay, S.K., Kumar, J., Alok, A., and Tuli, R. (2013). RNA-guided genome editing for target gene mutations in wheat. G3 3, 2233–2238.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Vainstein, A., Marton, I., Zuker, A., Danziger, M., and Tzfira, T. (2011). Permanent genome modifications in plant cells by transient viral vectors. Trends Biotech 29, 363–369.CrossRefGoogle Scholar
  111. Voytas, D.F., and Gao, C. (2014). Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12, e1001877.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wang, S., Zhang, S., Wang, W., Xiong, X., Meng, F., and Cui, X. (2015). Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34, 1473–1476.PubMedCrossRefGoogle Scholar
  113. Wang, L., Li, F., Dang, L., Liang, C., Wang, C., He, B., Liu, J., Li, D., Wu, X., Xu, X., Lu, A., and Zhang, G. (2016). In vivo delivery systems for therapeutic genome editing. Int J Mol Sci 17, 626.PubMedCentralCrossRefGoogle Scholar
  114. Wang, M., Liu, Y., Zhang, C., Liu, J., Liu, X., Wang, L., Wang, W., Chen, H., Wei, C., Ye, X., Li, X., and Tu, J. (2015). Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations. PLoS ONE 10, e0122755.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., and Qiu, J.L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32, 947–951.PubMedCrossRefGoogle Scholar
  116. Wang, Z.P., Xing, H.L., Dong, L., Zhang, H.Y., Han, C.Y., Wang, X.C., and Chen, Q.J. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16, 144.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Weeks, D.P., Spalding, M.H., and Yang, B. (2016). Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14, 483–495.PubMedCrossRefGoogle Scholar
  118. Wendt, T., Holm, P.B., Starker, C.G., Christian, M., Voytas, D.F., Brinch-Pedersen, H., and Holme, I.B. (2013). TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83, 279–285.PubMedCrossRefGoogle Scholar
  119. Weinthal, D., Tovkach, A., Zeevi, V., and Tzfira, T. (2010). Genome editing in plant cells by zinc finger nucleases. Trends Plant Sci 15, 308–321.PubMedCrossRefGoogle Scholar
  120. Woo, J.W., Kim, J., Kwon, S.I., Corvalán, C., Cho, S.W., Kim, H., Kim, S.G., Kim, S.T., Choe, S., and Kim, J.S. (2015). DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33, 1162–1164.PubMedCrossRefGoogle Scholar
  121. Wright, D.A., Townsend, J.A., Winfrey Jr, R.J., Irwin, P.A., Rajagopal, J., Lonosky, P.M., Hall, B.D., Jondle, M.D., and Voytas, D.F. (2005). Highfrequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44, 693–705.PubMedCrossRefGoogle Scholar
  122. Xie, K., and Yang, Y. (2013). RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6, 1975–1983.PubMedCrossRefGoogle Scholar
  123. Xie, K., Minkenberg, B., and Yang, Y. (2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112, 3570–3575.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Xing, H.L., Dong, L., Wang, Z.P., Zhang, H.Y., Han, C.Y., Liu, B., Wang, X.C., and Chen, Q.J. (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14, 327.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Xu, R., Li, H., Qin, R., Wang, L., Li, L., Wei, P., and Yang, J. (2014). Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice 7, 5.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Yan, L., Wei, S., Wu, Y., Hu, R., Li, H., Yang, W., and Xie, Q. (2015). Highefficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol Plant 8, 1820–1823.PubMedCrossRefGoogle Scholar
  127. Yin, K., Han, T., Liu, G., Chen, T., Wang, Y., Yu, A.Y.L., and Liu, Y. (2015). A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep 5, 14926.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Yoon, K., Cole-Strauss, A., and Kmiec, E.B. (1996). Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA.DNA oligonucleotide. Proc Natl Acad Sci USA 93, 2071–2076.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zhang, F., Maeder, M.L., Unger-Wallace, E., Hoshaw, J.P., Reyon, D., Christian, M., Li, X., Pierick, C.J., Dobbs, D., Peterson, T., Joung, J.K., and Voytas, D.F. (2010). High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 107, 12028–12033.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., Xu, N., and Zhu, J.K. (2014). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12, 797–807.PubMedCrossRefGoogle Scholar
  131. Zhang, H., Gou, F., Zhang, J., Liu, W., Li, Q., Mao, Y., Botella, J.R., and Zhu, J.K. (2016). TALEN-mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnol J 14, 186–194.PubMedCrossRefGoogle Scholar
  132. Zhang, Y., Zhang, F., Li, X., Baller, J.A., Qi, Y., Starker, C.G., Bogdanove, A.J., and Voytas, D.F. (2013). Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161, 20–27.PubMedCrossRefGoogle Scholar
  133. Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J.L., and Gao, C. (2016). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7, 12617.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Zhou, H., Liu, B., Weeks, D.P., Spalding, M.H., and Yang, B. (2014). Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42, 10903–10914.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zhu, T., Peterson, D.J., Tagliani, L., St. Clair, G., Baszczynski, C.L., and Bowen, B. (1999). Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Natl Acad Sci USA 96, 8768–8773.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Zhu, T., Mettenburg, K., Peterson, D.J., Tagliani, L., and Baszczynski, C.L. (2000). Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat Biotechnol 18, 555–558.PubMedCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Heidelberg 2017

Authors and Affiliations

  1. 1.Genovo Biotechnology Co., Ltd.TianjinChina
  2. 2.State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations