Advertisement

Science China Life Sciences

, Volume 60, Issue 6, pp 647–655 | Cite as

Inhalation of Roman chamomile essential oil attenuates depressive-like behaviors in Wistar Kyoto rats

  • Yingying Kong
  • Ting Wang
  • Rong Wang
  • Yichuan Ma
  • Shanshan Song
  • Juan Liu
  • Weiwei Hu
  • Shengtian LiEmail author
Research Paper

Abstract

The idea of aromatherapy, using essential oils, has been considered as an alternative antidepressant treatment. In the present study, we investigated the effect of Roman chamomile essential oil inhalation for two weeks on depressive-like behaviors in Wistar-Kyoto (WKY) rats. We found that inhalation of either Roman chamomile or one of its main components α-pinene, attenuated depressive-like behavior in WKY rats in the forced swim test. Using isobaric tags for relative and absolute quantitation analysis (iTRAQ), we found that inhalation of α-pinene increased expression of proteins that are involved in oxidative phosphorylation, such as cytochrome c oxidase subunit 6C-2, cytochrome c oxidase subunit 7A2, ATPase inhibitor in the hippocampus, and cytochrome c oxidase subunit 6C-2, ATP synthase subunit e, Acyl carrier protein, and Cytochrome b-c1 complex subunit 6 in the PFC (prefrontal cortex). In addition, using the quantitative real-time polymerase chain reaction technique, we confirmed an increase of parvalbumin mRNA expression in the hippocampus, which was shown to be upregulated by 2.8-fold in iTRAQ analysis, in α-pinene treated WKY rats. These findings collectively suggest the involvement of mitochondrial functions and parvalbumin-related signaling in the antidepressant effect of α-pinene inhalation.

Keywords

major depressive disorder aromatherapy parvalbumin α-pinene hippocampus iTRAQ analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31271198, 81121001, 81421061), the Science and Technology Commission of Shanghai Municipality (13DJ1400303, 13DZ2260500), and Shanghai Jiao Tong University (14JCRZ01).

References

  1. Bansal, Y., and Kuhad, A. (2016). Mitochondrial dysfunction in depression. Curr Neuropharmacol 14, 610–618.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Basso, D.M., Beattie, M.S., and Bresnahan, J.C. (1995). A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12, 1–21.CrossRefPubMedGoogle Scholar
  3. Becker, S., and Wojtowicz, J.M. (2007). A model of hippocampal neurogenesis in memory and mood disorders. Trends Cogn Sci 11, 70–76.CrossRefPubMedGoogle Scholar
  4. Burns, E., Blamey, C., Ersser, S.J., Lloyd, A.J., and Barnetson, L. (2000). The use of aromatherapy in intrapartum midwifery practice an observational study. Complement Ther Nurs Midwifery 6, 33–34.CrossRefPubMedGoogle Scholar
  5. Can, O.D., Demir Özkay, U., Kıyan, H.T., and Demirci, B. (2012). Psychopharmacological profile of Chamomile (Matricaria recutita L.) essential oil in mice. Phytomedicine 19, 306–310.CrossRefPubMedGoogle Scholar
  6. Chang, S.M., and Chen, C.H. (2016). Effects of an intervention with drinking chamomile tea on sleep quality and depression in sleep disturbed postnatal women: a randomized controlled trial. J Adv Nurs 72, 306–315.CrossRefPubMedGoogle Scholar
  7. Czéh, B., Varga, Z.K.K., Henningsen, K., Kovács, G.L., Miseta, A., and Wiborg, O. (2015). Chronic stress reduces the number of GABAergic interneurons in the adult rat hippocampus, dorsal-ventral and region-specific differences. Hippocampus 25, 393–405.CrossRefPubMedGoogle Scholar
  8. Duman, R.S., and Aghajanian, G.K. (2012). Synaptic dysfunction in depression: potential therapeutic targets. Science 338, 68–72.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Farhoudi, R. (2013). Chemical constituents and antioxidant properties of Matricaria recutita and Chamaemelum nobile essential oil growing wild in the south west of Iran. J Essential Oil Bearing Plants 16, 531–537.CrossRefGoogle Scholar
  10. Gardner, A., Johansson, A., Wibom, R., Nennesmo, I., von, D.U., Hagenfeldt, L., and Hallstrom, T. (2003). Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord 76, 55–68.CrossRefPubMedGoogle Scholar
  11. Graham, P.H., Browne, L., Cox, H., and Graham, J. (2003). Inhalation aromatherapy during radiotherapy: results of a placebo-controlled double- blind randomized trial. J Clin Oncol 21, 2372–2376.CrossRefPubMedGoogle Scholar
  12. Guzmán-Gutiérrez, S.L., Gómez-Cansino, R., García-Zebadúa, J.C., Jiménez-Pérez, N.C., and Reyes-Chilpa, R. (2012). Antidepressant activity of Litsea glaucescens essential oil: identification of β-pinene and linalool as active principles. J Ethnopharmacol 143, 673–679.CrossRefPubMedGoogle Scholar
  13. Holm, M.M., Nieto-Gonzalez, J.L., Vardya, I., Henningsen, K., Jayatissa, M.N., Wiborg, O., and Jensen, K. (2011). Hippocampal GABAergic dysfunction in a rat chronic mild stress model of depression. Hippocampus 21, 422–433.CrossRefPubMedGoogle Scholar
  14. Holmes, A., Yang, R.J., and Crawley, N. (2002). Evaluation of an anxiety- related phenotype in galanin overexpressing transgenic mice. J Mol Neurosci 18, 151–166.CrossRefPubMedGoogle Scholar
  15. Inan, M., Zhao, M., Manuszak, M., Karakaya, C., Rajadhyaksha, A.M., Pickel, V.M., Schwartz, T.H., Goldstein, P.A., and Manfredi, G. (2016). Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social disability. Neurobiol Dis 93, 35–46.CrossRefPubMedGoogle Scholar
  16. Ito, N., Nagai, T., Oikawa, T., Yamada, H., and Hanawa, T. (2011). Antidepressant-like effect of l-perillaldehyde in stress-induced depression-like model mice through regulation of the olfactory nervous system. Evid Based Complement Alternat Med 2011, 1–5.CrossRefGoogle Scholar
  17. Ji, W.W., Li, R.P., Li, M., Wang, S.Y., Zhang, X., Niu, X.X., Li, W., Yan, L., Wang, Y., Fu, Q., and Ma, S.P. (2014). Antidepressant-like effect of essential oil of Perilla frutescens in a chronic, unpredictable, mild stress-induced depression model mice. Chin J Nat Meds 12, 753–759.Google Scholar
  18. Kempermann, G., Krebs, J., and Fabel, K. (2008). The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Curr Opin Psychiatry 21, 290–295.CrossRefPubMedGoogle Scholar
  19. Khundakar, A., Morris, C., and Thomas, A.J. (2011). The immunhistochemical examination of GABAergic interneuron markers in the dorsolateral prefrontal cortex of patients with late-life depression. Int Psychogeriatr 23, 644–653.CrossRefPubMedGoogle Scholar
  20. Kim, M.J., Nam, E.S., and Paik, S.I. (2005). The effects of aromatherapy on pain, depression, and life satisfaction of arthritis patients. J Korean Acad Nurs 35, 186–194.CrossRefGoogle Scholar
  21. Koene, S., Kozicz, T.L., Rodenburg, R.J.T., Verhaak, C.M., de Vries, M.C., Wortmann, S., van de Heuvel, L., Smeitink, J.A.M., and Morava, E. (2009). Major depression in adolescent children consecutively diagnosed with mitochondrial disorder. J Affect Disord 114, 327–332.CrossRefPubMedGoogle Scholar
  22. Louis, M., and Kowalski, S.D. (2002). Use of aromatherapy with hospice patients to decrease pain, anxiety, and depression and to promote an increased sense of well-being. Am J Hosp Palliat Med 19, 381–386.CrossRefGoogle Scholar
  23. Ludka, F.K., Dal-Cim, T., Binder, L.B., Constantino, L.C., Massari, C., and Tasca, C.I. (2016). Atorvastatin and fluoxetine prevent oxidative stress and mitochondrial dysfunction evoked by glutamate toxicity in hippocampal slices. Mol Neurobiol in press doi: 10.1007/s12035-016-9882-6.Google Scholar
  24. Luz, D.A., Pinheiro, A.M., Silva, M.L., Monteiro, M.C., Prediger, R.D., Ferraz Maia, C.S., and Fontes-Júnior, E.A. (2016). Ethnobotany, phytochemistry and neuropharmacological effects of Petiveria alliacea L. (Phytolaccaceae): a review. J Ethnopharmacol 185, 182–201.CrossRefPubMedGoogle Scholar
  25. Makhloufi, A., Ben Larbi, L., Moussaoui, A., Lazouni, H. A., Romane, A., Wanner, J., Schmidt, E., Jirovetz, L., and Hoferle, M. (2015). Chemical composition and antifungal activity of Aaronsohnia pubescens essential oil from Algeria. Nat Prod Commun 10, 149–151.PubMedGoogle Scholar
  26. McKay, D.L., and Blumberg, J.B. (2006). A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother Res 20, 519–530.CrossRefPubMedGoogle Scholar
  27. Mehta, A.K., Halder, S., Khanna, N., Tandon, O.P., and Sharma, K.K. (2013). The effect of the essential oil of Eugenia caryophyllata in animal models of depression and locomotor activity. Nutr Neurosci 16, 233–238.CrossRefPubMedGoogle Scholar
  28. Norte, M.C.B., Cosentino, R.M., and Lazarini, C.A. (2005). Effects of methyl-eugenol administration on behavioral models related to depression and anxiety, in rats. Phytomedicine 12, 294–298.CrossRefPubMedGoogle Scholar
  29. Oquendo, M.A., Placidi, G.P.A., Malone, K.M., Campbell, C., Keilp, J., Brodsky, B., Kegeles, L.S., Cooper, T.B., Parsey, R.V., Van Heertum, R.L., and Mann, J.J. (2003). Positron emission tomography of regional brain metabolic responses to a serotonergic challenge and lethality of suicide attempts in major depression. Arch Gen Psychiatry 60, 14–22.CrossRefPubMedGoogle Scholar
  30. Overstreet, D.H. (2012). Modeling depression in animal models. Methods Mol Biol 829, 125–144.CrossRefPubMedGoogle Scholar
  31. Paré, W.P. (1989). Stress ulcer susceptibility and depression in Wistar Kyoto (WKY) rats. Physiol Behav 46, 993–998.CrossRefPubMedGoogle Scholar
  32. Paré, W.P. (1994). Open field, learned helplessness, conditioned defensive burying, and forced-swim tests in WKY rats. Physiol Behav 55, 433–439.CrossRefPubMedGoogle Scholar
  33. Park, H.J., Lim, E.J., Zhao, R.J., Oh, S.R., Jung, J.W., Ahn, E.M., Lee, E.S., Koo, J.S., Kim, H.Y., Chang, S., Shim, H.S., Kim, K.J., Gwak, Y.S., and Yang, C.H. (2015). Effect of the fragrance inhalation of essential oil from Asarum heterotropoides on depression-like behaviors in mice. BMC Complement Altern Med 15, 43.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Porsolt, R.D., Anton, G., Blavet, N., and Jalfre, M. (1978). Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47, 379–391.CrossRefPubMedGoogle Scholar
  35. Rajkowska, G., O’Dwyer, G., Teleki, Z., Stockmeier, C.A., and Miguel-Hidalgo, J.J. (2007). GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology 32, 471–482.CrossRefPubMedGoogle Scholar
  36. Rezin, G.T., Amboni, G., Zugno, A.I., Quevedo, J., and Streck, E.L. (2009). Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34, 1021–1029.CrossRefPubMedGoogle Scholar
  37. Seol, G.H., Shim, H.S., Kim, P.J., Moon, H.K., Lee, K.H., Shim, I., Suh, S.H., and Min, S.S. (2010). Antidepressant-like effect of Salvia sclarea is explained by modulation of dopamine activities in rats. J Ethnopharmacol 130, 187–190.CrossRefPubMedGoogle Scholar
  38. Singh, O., Khanam, Z., Misra, N., and Srivastava, M.K. (2011). Chamomile (Matricaria chamomilla L.): an overview. Pharmacogn Rev 5, 82–95.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Snyder, J.S., Soumier, A., Brewer, M., Pickel, J., and Cameron, H.A. (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476, 458–461.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tobe, E.H. (2013). Mitochondrial dysfunction, oxidative stress, and major depressive disorder. Neuropsychiatr Dis Treat 9, 567.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Torrey, E.F., Barci, B.M., Webster, M.J., Bartko, J.J., Meador-Woodruff, J.H., and Knable, M.B. (2005). Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 57, 252–260.CrossRefPubMedGoogle Scholar
  42. Varga, Z., Csabai, D., Miseta, A., Wiborg, O., and Czéh, B. (2017). Chronic stress affects the number of GABAergic neurons in the orbitofrontal cortex of rats. Behav Brain Res 316, 104–114.CrossRefPubMedGoogle Scholar
  43. Xiong, Y., Tang, X., Meng, Q., and Zhang, H. (2016). Differential expression analysis of the broiler tracheal proteins responsible for the immune response and muscle contraction induced by high concentration of ammonia using iTRAQ-coupled 2D LC-MS/MS. Sci China Life Sci 59, 1166–1176.CrossRefPubMedGoogle Scholar
  44. Yang, L., Mei, T., Lin, X., Tang, H., Wu, Y., Wang, R., Liu, J., Shah, Z., and Liu, X. (2016). Current approaches to reduce or eliminate mitochondrial DNA mutations. Sci China Life Sci 59, 532–535.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Heidelberg 2017

Authors and Affiliations

  • Yingying Kong
    • 1
  • Ting Wang
    • 1
    • 2
  • Rong Wang
    • 1
  • Yichuan Ma
    • 1
  • Shanshan Song
    • 1
  • Juan Liu
    • 1
  • Weiwei Hu
    • 1
  • Shengtian Li
    • 1
    Email author
  1. 1.Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research CenterShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Kao (China) Research CenterShanghaiChina

Personalised recommendations