Science China Life Sciences

, Volume 59, Issue 8, pp 770–776 | Cite as

Mitochondrial Ca2+ uptake in skeletal muscle health and disease

Open Access


Muscle uses Ca2+ as a messenger to control contraction and relies on ATP to maintain the intracellular Ca2+ homeostasis. Mitochondria are the major sub-cellular organelle of ATP production. With a negative inner membrane potential, mitochondria take up Ca2+ from their surroundings, a process called mitochondrial Ca2+ uptake. Under physiological conditions, Ca2+ uptake into mitochondria promotes ATP production. Excessive uptake causes mitochondrial Ca2+ overload, which activates downstream adverse responses leading to cell dysfunction. Moreover, mitochondrial Ca2+ uptake could shape spatio-temporal patterns of intracellular Ca2+ signaling. Malfunction of mitochondrial Ca2+ uptake is implicated in muscle degeneration. Unlike non-excitable cells, mitochondria in muscle cells experience dramatic changes of intracellular Ca2+ levels. Besides the sudden elevation of Ca2+ level induced by action potentials, Ca2+ transients in muscle cells can be as short as a few milliseconds during a single twitch or as long as minutes during tetanic contraction, which raises the question whether mitochondrial Ca2+ uptake is fast and big enough to shape intracellular Ca2+ signaling during excitation-contraction coupling and creates technical challenges for quantification of the dynamic changes of Ca2+ inside mitochondria. This review focuses on characterization of mitochondrial Ca2+ uptake in skeletal muscle and its role in muscle physiology and diseases.


skeletal muscle mitochondria Ca2+ 


  1. Ainbinder, A., Boncompagni, S., Protasi, F., and Dirksen, R.T. (2015). Role of Mitofusin-2 in mitochondrial localization and calcium uptake in skeletal muscle. Cell Calcium 57, 14–24.CrossRefPubMedGoogle Scholar
  2. Andersson, D.C., Betzenhauser, M.J., Reiken, S., Meli, A.C., Umanskaya, A., Xie, W., Shiomi, T., Zalk, R., Lacampagne, A., and Marks, A.R. (2011). Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab 14, 196–207.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arnaudeau, S., Kelley, W.L., Walsh, J.V., and Demaurex, N. (2001). Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J Biol Chem 276, 29430–29439.CrossRefPubMedGoogle Scholar
  4. Aydin, J., Andersson, D.C., Hanninen, S.L., Wredenberg, A., Tavi, P., Park, C.B., Larsson, N.G., Bruton, J.D., and Westerblad, H. (2009). Increased mitochondrial Ca2+ and decreased sarcoplasmic reticulum Ca2+ in mitochondrial myopathy. Hum Mol Genet 18, 278–288.CrossRefPubMedGoogle Scholar
  5. Balaban, R.S. (2002). Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol 34, 1259–1271.CrossRefPubMedGoogle Scholar
  6. Baughman, J.M., Perocchi, F., Girgis, H.S., Plovanich, M., Belcher- Timme, C.A., Sancak, Y., Bao, X.R., Strittmatter, L., Goldberger, O., Bogorad, R.L., Koteliansky, V., and Mootha, V.K. (2011). Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bianchi, K., Rimessi, A., Prandini, A., Szabadkai, G., and Rizzuto, R. (2004). Calcium and mitochondria: mechanisms and functions of a troubled relationship. Biochim Biophys Acta 1742, 119–131.CrossRefPubMedGoogle Scholar
  8. Boncompagni, S., Rossi, A.E., Micaroni, M., Beznoussenko, G.V., Polishchuk, R.S., Dirksen, R.T., and Protasi, F. (2009). Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. Mol Biol Cell 20, 1058–1067.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brini, M., Manni, S., Pierobon, N., Du, G.G., Sharma, P., MacLennan, D.H., and Carafoli, E. (2005). Ca2+ signaling in HEK-293 and skeletal muscle cells expressing recombinant ryanodine receptors harboring malignant hyperthermia and central core disease mutations. J Biol Chem 280, 15380–15389.CrossRefPubMedGoogle Scholar
  10. Brookes, P.S., Yoon, Y., Robotham, J.L., Anders, M.W., and Sheu, S.S. (2004). Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287, C817–C833.CrossRefPubMedGoogle Scholar
  11. Bruton, J., Tavi, P., Aydin, J., Westerblad, H., and Lannergren, J. (2003). Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions. J Physiol 551, 179–190.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Carafoli, E. (2014). Discussion forum on mitochondrial calcium. Historical introduction. Biochem Biophys Res Commun 449, 365–366.CrossRefPubMedGoogle Scholar
  13. Carafoli, E., and Crompton, M. (1978). The regulation of intracellular calcium by mitochondria. Ann N YA cad Sci 307, 269–284.CrossRefGoogle Scholar
  14. Chemello, F., Mammucari, C., Gherardi, G., Rizzuto, R., Lanfranchi, G., and Cagnin, S. (2015). Gene expression changes of single skeletal muscle fibers in response to modulation of the mitochondrial calcium uniporter (MCU). Genom Data 5, 64–67.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Csordás, G., Golenár, T., Seifert, E.L., Kamer, K.J., Sancak, Y., Perocchi, F., Moffat, C., Weaver, D., de la Fuente Perez, S., Bogorad, R., Koteliansky, V., Adijanto, J., Mootha, V.K., and Hajnóczky, G. (2013). MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca2+ uniporter. Cell Metab 17, 976–987.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Csordas, G., and Hajnoczky, G. (2009). SR/ER-mitochondrial local communication: calcium and ROS. Biochim Biophys Acta 1787, 1352–1362.CrossRefPubMedPubMedCentralGoogle Scholar
  17. de Backer, F., Vandebrouck, C., Gailly, P., and Gillis, J.M. (2002). Long-term study of Ca2+ homeostasis and of survival in collagenase-isolated muscle fibres from normal and mdx mice. J Physiol 542, 855–865.CrossRefPubMedPubMedCentralGoogle Scholar
  18. de Brito, O.M., and Scorrano, L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610.CrossRefPubMedGoogle Scholar
  19. de Stefani, D., Raffaello, A., Teardo, E., Szabo, I., and Rizzuto, R. (2011). A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336–340.CrossRefPubMedPubMedCentralGoogle Scholar
  20. de Stefani, D., Rizzuto, R., and Pozzan, T. (2016). Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem 85, 161–192CrossRefPubMedGoogle Scholar
  21. Delbono, O. (2002). Molecular mechanisms and therapeutics of the deficit in specific force in ageing skeletal muscle. Biogerontology 3, 265–270.CrossRefPubMedGoogle Scholar
  22. Deluca, H.F., and Engstrom, G.W. (1961). Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci USA 47, 1744–1750.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Denton, R.M. (2009). Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787, 1309–1316.CrossRefPubMedGoogle Scholar
  24. Denton, R.M., McCormack, J.G., and Edgell, N.J. (1980). Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J 190, 107–117.CrossRefPubMedPubMedCentralGoogle Scholar
  25. DiFranco, M., Woods, C.E., Capote, J., and Vergara, J.L. (2008). Dystrophic skeletal muscle fibers display alterations at the level of calcium microdomains. Proc Natl Acad Sci USA 105, 14698–14703.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Drago, I., Pizzo, P., and Pozzan, T. (2011). After half a century mitochondrial calcium in-and efflux machineries reveal themselves. EMBO J 30, 4119–4125.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Duboc, D., Muffat-Joly, M., Renault, G., Degeorges, M., Toussaint, M., and Pocidalo, J.J. (1988). In situ NADH laser fluorimetry of rat fastand slow-twitch muscles during tetanus. J Appl Physiol 64, 2692–2695.PubMedGoogle Scholar
  28. Durham, W.J., Aracena-Parks, P., Long, C., Rossi, A.E., Goonasekera, S.A., Boncompagni, S., Galvan, D.L., Gilman, C.P., Baker, M.R., Shirokova, N., Protasi, F., Dirksen, R., and Hamilton, S.L. (2008). RyR1 S-nitrosylation underlies environmental heat stroke and sudden death in Y522S RyR1 knockin mice. Cell 133, 53–65.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Eisenberg, B.R. (1983). Quantitative Ultrastructure of Mammalian Skeletal Muscle. Handbook of Physiology, Skeletal Muscle (Bethesda: American Physiological Society).Google Scholar
  30. Eisner, V., Csordas, G., and Hajnoczky, G. (2013). Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle-pivotal roles in Ca2+ and reactive oxygen species signaling. J Cell Sci 126, 2965–2978.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Eisner, V., Parra, V., Lavandero, S., Hidalgo, C., and Jaimovich, E. (2010). Mitochondria fine-tune the slow Ca2+ transients induced by electrical stimulation of skeletal myotubes. Cell Calcium 48, 358–370.CrossRefPubMedGoogle Scholar
  32. Fieni, F., Lee, S.B., Jan, Y.N., and Kirichok, Y. (2012). Activity of the mitochondrial calcium uniporter varies greatly between tissues. Nat Commun 3, 1317.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fonteriz, R.I., de la Fuente, S., Moreno, A., Lobaton, C.D., Montero, M., and Alvarez, J. (2010). Monitoring mitochondrial [Ca2+] dynamics with rhod-2, ratiometric pericam and aequorin. Cell Calcium 48, 61–69.CrossRefPubMedGoogle Scholar
  34. Franzini-Armstrong, C., and Jorgensen, A.O. (1994). Structure and development of E-C coupling units in skeletal muscle. Annu Rev Physiol 56, 509–534.CrossRefPubMedGoogle Scholar
  35. Frieden, M., Arnaudeau, S., Castelbou, C., and Demaurex, N. (2005). Subplasmalemmal mitochondria modulate the activity of plasma membrane Ca2+-ATPases. J Biol Chem 280, 43198–43208.CrossRefPubMedGoogle Scholar
  36. Griffiths, E.J., and Rutter, G.A. (2009). Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochim Biophys Acta 1787, 1324–1333.CrossRefPubMedGoogle Scholar
  37. Gueguen, N., Lefaucheur, L., Ecolan, P., Fillaut, M., and Herpin, P. (2005). Ca2+-activated myosin-ATPases, creatine and adenylate kinases regulate mitochondrial function according to myofibre type in rabbit. J Physiol 564, 723–735.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Han, R., Grounds, M.D., and Bakker, A.J. (2006). Measurement of sub-membrane [Ca2+] in adult myofibers and cytosolic [Ca2+] in myotubes from normal and mdx mice using the Ca2+ indicator FFP-18. Cell calcium 40, 299–307.CrossRefPubMedGoogle Scholar
  39. Hopf, F.W., Turner, P.R., Denetclaw, W.F., Reddy, P., and Steinhardt, R.A. (1996). A critical evaluation of resting intracellular free calcium regulation in dystrophic mdx muscle. Am J Physiol 271, C1325–C1339.PubMedGoogle Scholar
  40. Jhun, B.S., Mishra, J., Monaco, S., Fu, D., Jiang, W., Sheu, S.S., and J, O.U. (2016). The mitochondrial Ca2+ uniporter: regulation by auxiliary subunits and signal transduction pathways. Am J Physiol Cell Physiol, ajpcell 00319 02015.Google Scholar
  41. Kamer, K.J., and Mootha, V.K. (2015). The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol 16, 545–553.CrossRefPubMedGoogle Scholar
  42. Kavanagh, N.I., Ainscow, E.K., and Brand, M.D. (2000). Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria. Biochim Biophys Acta 1457, 57–70.CrossRefPubMedGoogle Scholar
  43. Knowles, J.R. (1980). Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 49, 877–919.CrossRefPubMedGoogle Scholar
  44. Kunz, W.S. (2001). Control of oxidative phosphorylation in skeletal muscle. Biochim Biophys Acta 1504, 12–19.CrossRefPubMedGoogle Scholar
  45. Lakin-Thomas, P.L., and Brand, M.D. (1987). Mitogenic stimulation transiently increases the exchangeable mitochondrial calcium pool in rat thymocytes. Biochem J 246, 173–177.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Logan, C.V., Szabadkai, G., Sharpe, J.A., Parry, D.A., Torelli, S., Childs, A.M., Kriek, M., Phadke, R., Johnson, C.A., Roberts, N.Y., Bonthron, D.T., Pysden, K.A., Whyte, T., Munteanu, I., Foley, A.R., Wheway, G., Szymanska, K., Natarajan, S., Abdelhamed, Z.A., Morgan, J.E., Roper, H., Santen, G.W., Niks, E.H., van der Pol, W.L., Lindhout, D., Raffaello, A., de Stefani, D., den Dunnen, J.T., Sun, Y., Ginjaar, I., Sewry, C.A., Hurles, M., Rizzuto, R., UK10K Consortium, Duchen, M.R., Muntoni, F., and Sheridan, E. (2014). Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat Gene 46, 188–193.CrossRefGoogle Scholar
  47. Mallouk, N., Jacquemond, V., and Allard, B. (2000). Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels. Proc Natl Acad Sci USA 97, 4950–4955.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mammucari, C., Gherardi, G., Zamparo, I., Raffaello, A., Boncompagni, S., Chemello, F., Cagnin, S., Braga, A., Zanin, S., Pallafacchina, G., Zentilin, L., Sandri, M., de Stefani, D., Protasi, F., Lanfranchi, G., and Rizzuto, R. (2015). The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo. Cell Rep 10, 1269–1279.CrossRefPubMedPubMedCentralGoogle Scholar
  49. McMillin-Wood, J., Wolkowicz, P.E., Chu, A., Tate, C.A., Goldstein, M.A., and Entman, M.L. (1980). Calcium uptake by two preparations of mitochondria from heart. Biochim Biophys Acta 591, 251–265.CrossRefPubMedGoogle Scholar
  50. Mraz, F.R. (1962). Calcium and strontium uptake by rat liver and kidney mitochondria. Proc Soc Exp Biol Med 111, 429–431.CrossRefPubMedGoogle Scholar
  51. Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M., and Miyawaki, A. (2004). Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101, 10554–10559.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Nicholls, D.G. (2005). Mitochondria and calcium signaling. Cell Calcium 38, 311–317.CrossRefPubMedGoogle Scholar
  53. O’Rourke, B. (2010). From bioblasts to mitochondria: ever expanding roles of mitochondria in cell physiology. Front Physiol 1, 7.PubMedPubMedCentralGoogle Scholar
  54. O’Rourke, B., and Blatter, L.A. (2009). Mitochondrial Ca2+ uptake: tortoise or hare? J Mol Cell Cardiol 46, 767–774.CrossRefPubMedGoogle Scholar
  55. Palmer, A.E., Giacomello, M., Kortemme, T., Hires, S.A., Lev-Ram, V., Baker, D., and Tsien, R.Y. (2006). Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13, 521–530.CrossRefPubMedGoogle Scholar
  56. Pan, X., Liu, J., Nguyen, T., Liu, C., Sun, J., Teng, Y., Fergusson, M.M., Rovira, II, Allen, M., Springer, D.A., Aponte, A.M., Gucek, M., Balaban, R.S., Murphy, E., and Finkel, T. (2013). The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15, 1464–1472.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Perocchi, F., Gohil, V.M., Girgis, H.S., Bao, X.R., McCombs, J.E., Palmer, A.E., and Mootha, V.K. (2010). MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467, 291–296.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pietrangelo, L., D’ Incecco, A., Ainbinder, A., Michelucci, A., Kern, H., Dirksen, R.T., Boncompagni, S., and Protasi, F. (2015). Age-dependent uncoupling of mitochondria from Ca2+ release units in skeletal muscle. Oncotarget 6, 35358–35371.PubMedPubMedCentralGoogle Scholar
  59. Porter, C., and Wall, B.T. (2012). Skeletal muscle mitochondrial function: is it quality or quantity that makes the difference in insulin resistance? J Physiol 590, 5935–5936.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pozzan, T., and Rudolf, R. (2009). Measurements of mitochondrial calcium in vivo. Biochim Biophys Acta 1787, 1317–1323.CrossRefPubMedGoogle Scholar
  61. Rizzuto, R., and Pozzan, T. (2006). Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86, 369–408.CrossRefPubMedGoogle Scholar
  62. Robert, V., Massimino, M.L., Tosello, V., Marsault, R., Cantini, M., Sorrentino, V., and Pozzan, T. (2001). Alteration in calcium handling at the subcellular level in mdx myotubes. J Biol Chem 276, 4647–4651.CrossRefPubMedGoogle Scholar
  63. Rossi, A.E., Boncompagni, S., and Dirksen, R.T. (2009). Sarcoplasmic reticulum-mitochondrial symbiosis: bidirectional signaling in skeletal muscle. Exerc Sport Sci Rev 37, 29–35.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Rudolf, R., Mongillo, M., Magalhaes, P.J., and Pozzan, T. (2004). In vivo monitoring of Ca2+ uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol 166, 527–536.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Russell, A.P., Foletta, V.C., Snow, R.J., and Wadley, G.D. (2014). Skeletal muscle mitochondria: a major player in exercise, health and disease. Biochim Biophys Acta 1840, 1276–1284.CrossRefPubMedGoogle Scholar
  66. Sahlin, K. (1985). NADH in human skeletal muscle during short-term intense exercise. Pflugers Arch 403, 193–196.CrossRefPubMedGoogle Scholar
  67. Santo-Domingo, J., and Demaurex, N. (2010). Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta 1797, 907–912.CrossRefPubMedGoogle Scholar
  68. Sembrowich, W.L., Quintinskie, J.J., and Li, G. (1985). Calcium uptake in mitochondria from different skeletal muscle types. J Appl Physiol 59, 137–141.PubMedGoogle Scholar
  69. Shkryl, V.M., Martins, A.S., Ullrich, N.D., Nowycky, M.C., Niggli, E., and Shirokova, N. (2009). Reciprocal amplification of ROS and Ca2+ signals in stressed mdx dystrophic skeletal muscle fibers. Pflugers Arch 458, 915–928.CrossRefPubMedGoogle Scholar
  70. Shkryl, V.M., and Shirokova, N. (2006). Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle. J Biol Chem 281, 1547–1554.CrossRefPubMedGoogle Scholar
  71. Starkov, A.A. (2010). The molecular identity of the mitochondrial Ca2+ sequestration system. FEBS J 277, 3652–3663.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Territo, P.R., Mootha, V.K., French, S.A., and Balaban, R.S. (2000). Ca2+ activation of heart mitochondrial oxidative phosphorylation: role of the F0/F1-ATPase. Am J Physiol Cell Physiol 278, C423–C435.PubMedGoogle Scholar
  73. Tsien, R.Y. (1998). The green fluorescent protein. Annu Rev Biochem 67, 509–544.CrossRefPubMedGoogle Scholar
  74. Vandebrouck, C., Martin, D., Colson-Van Schoor, M., Debaix, H., and Gailly, P. (2002). Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158, 1089–1096.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wang, W., Fang, H., Groom, L., Cheng, A., Zhang, W., Liu, J., Wang, X., Li, K., Han, P., Zheng, M., Yin, J., Wang, W., Mattson, M.P., Kao, J.P., Lakatta, E.G., Sheu, S.S., Ouyang, K., Chen, J., Dirksen, R.T., and Cheng, H. (2008). Superoxide flashes in single mitochondria. Cell 134, 279–290.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wang, X., Weisleder, N., Collet, C., Zhou, J., Chu, Y., Hirata, Y., Zhao, X., Pan, Z., Brotto, M., Cheng, H., and Ma, J. (2005). Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nat Cell Biol 7, 525–530.CrossRefPubMedGoogle Scholar
  77. Weisleder, N., Brotto, M., Komazaki, S., Pan, Z., Zhao, X., Nosek, T., Parness, J., Takeshima, H., and Ma, J. (2006). Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release. J Cell Biol 174, 639–645.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wredenberg, A., Wibom, R., Wilhelmsson, H., Graff, C., Wiener, H.H., Burden, S.J., Oldfors, A., Westerblad, H., and Larsson, N.G. (2002). Increased mitochondrial mass in mitochondrial myopathy mice. Proc Natl Acad Sci USA 99, 15066–15071.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yi, J., Ma, C., Li, Y., Weisleder, N., Rios, E., Ma, J., and Zhou, J. (2011). Mitochondrial calcium uptake regulates rapid calcium transients in skeletal muscle during excitation-contraction (E-C) coupling. J Biol Chem 286, 32436–32443.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Yi, M., Weaver, D., and Hajnoczky, G. (2004). Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167, 661–672.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhou, J., Yi, J., Fu, R., Liu, E., Siddique, T., Rios, E., and Deng, H.X. (2010). Hyperactive intracellular calcium signaling associated with localized mitochondrial defects in skeletal muscle of an animal model of amyotrophic lateral sclerosis. J Biol Chem 285, 705–712.CrossRefPubMedGoogle Scholar
  82. Zhou, J., Yi, J., Royer, L., Pouvreau, S., and Ríos, E. (2008). Distribution, responses during Ca2+ transients and calibration of a mitochondria-targeted cameleon biosensor expressed in muscle of live mice. Biophys J 94, 253a.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Kansas City University of Medicine and BioscienceDybedal Research CenterKansas CityUSA

Personalised recommendations