Advertisement

Science China Life Sciences

, Volume 59, Issue 10, pp 1006–1023 | Cite as

Alzheimer’s disease and gut microbiota

  • Xu Hu
  • Tao Wang
  • Feng Jin
Open Access
Review

Abstract

Alzheimer’s disease (AD) is a most common neurodegenerative disorder, which associates with impaired cognition. Gut microbiota can modulate host brain function and behavior via microbiota-gut-brain axis, including cognitive behavior. Germ-free animals, antibiotics, probiotics intervention and diet can induce alterations of gut microbiota and gut physiology and also host cognitive behavior, increasing or decreasing risks of AD. The increased permeability of intestine and blood-brain barrier induced by gut microbiota disturbance will increase the incidence of neurodegeneration disorders. Gut microbial metabolites and their effects on host neurochemical changes may increase or decrease the risk of AD. Pathogenic microbes infection will also increase the risk of AD, and meanwhile, the onset of AD support the “hygiene hypothesis”. All the results suggest that AD may begin in the gut, and is closely related to the imbalance of gut microbiota. Modulation of gut microbiota through personalized diet or beneficial microbiota intervention will probably become a new treatment for AD.

Keywords

Alzheimer’s disease gut microbiota leaky gut leaky brain diet infection hygiene hypothesis 

References

  1. Alonso, R., Pisa, D., Marina, A.I., Morato, E., Rabano, A., and Carrasco, L. (2014a). Fungal infection in patients with Alzheimer’s disease. J Alzheimers Dis 41, 301–311.PubMedGoogle Scholar
  2. Alonso, R., Pisa, D., Rabano, A., and Carrasco, L. (2014b). Alzheimer’s disease and disseminated mycoses. Eur J Clin Microbiol Infect Dis 33, 1125–1132.PubMedCrossRefGoogle Scholar
  3. Alzheimer’s Association. (2015). 2015 Alzheimer’s disease facts and figures. Alzheimer’s Dementia 11, 332–384.CrossRefGoogle Scholar
  4. Apter, A.J. (2003). Early exposure to allergen: is this the cat’s meow, or are we barking up the wrong tree? J Allergy Clin Immunol 111, 938–946.PubMedCrossRefGoogle Scholar
  5. Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D.R., Fernandes, G.R., Tap, J., Bruls, T., Batto, J.M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H.B., Nielsen, T., Pons, N., Poulain, J., Qin, J.J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal, E.G., Wang, J., Guarner, F., Pedersen, O., de Vos, W.M., Brunak, S., Dore, J., Weissenbach, J., Ehrlich, S.D., Bork, P., and Consortium, M. (2011). Enterotypes of the human gut microbiome. Nature 473, 174–180.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aziz, Q., Dore, J., Emmanuel, A., Guarner, F., and Quigley, E.M. (2013). Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterol Motil 25, 4–15.PubMedCrossRefGoogle Scholar
  7. Backhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A., and Gordon, J.I. (2005). Host-bacterial mutualism in the human intestine. Science 307, 1915–1920.PubMedCrossRefGoogle Scholar
  8. Bajaj, J.S., Heuman, D.M., Sanyal, A.J., Hylemon, P.B., Sterling, R.K., Stravitz, R.T., Fuchs, M., Ridlon, J.M., Daita, K., Monteith, P., Noble, N.A., White, M.B., Fisher, A., Sikaroodi, M., Rangwala, H., and Gillevet, P.M. (2013). Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy. PLoS One 8, e60042.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bajaj, J.S., Ridlon, J.M., Hylemon, P.B., Thacker, L.R., Heuman, D.M., Smith, S., Sikaroodi, M., and Gillevet, P.M. (2012). Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol-Gastr L 302, G168–G175.Google Scholar
  10. Balin, B.J., Gerard, H.C., Arking, E.J., Appelt, D.M., Branigan, P.J., Abrams, J.T., Whittum-Hudson, J.A., and Hudson, A.P. (1998). Identification and localization of Chlamydia pneumoniae in the Alzheimer’s brain. Med Microbiol Immunol 187, 23–42.PubMedCrossRefGoogle Scholar
  11. Balin, B.J., and Hudson, A.P. (2014). Etiology and pathogenesis of late-onset Alzheimer’s disease. Curr Allergy Asthma Rep 14, 417.PubMedCrossRefGoogle Scholar
  12. Ball, M.J. (1982). Limbic predilection in Alzheimer dementia: is reactivated herpes virus involved. Can J Neurol Sci 9, 303–306.PubMedCrossRefGoogle Scholar
  13. Banack, S.A., Caller, T.A., and Stommel, E.W. (2010). The cyanobacteria derived toxin Beta-N-methylamino-L-alanine and amyotrophic lateral sclerosis. Toxins (Basel) 2, 2837–2850.PubMedCentralCrossRefGoogle Scholar
  14. Barberger-Gateau, P., Letenneur, L., Deschamps, V., Peres, K., Dartigues, J.F., and Renaud, S. (2002). Fish, meat, and risk of dementia: cohort study. BMJ 325, 932–933.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Barberger-Gateau, P., Raffaitin, C., Letenneur, L., Berr, C., Tzourio, C., Dartigues, J.F., and Alperovitch, A. (2007). Dietary patterns and risk of dementia: the three-city cohort study. Neurology 69, 1921–1930.PubMedCrossRefGoogle Scholar
  16. Barrett, E., Ross, R.P., O’Toole, P.W., Fitzgerald, G.F., and Stanton, C. (2012). gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113, 411–417.PubMedCrossRefGoogle Scholar
  17. Benjamin, J., Singla, V., Arora, I., Sood, S., and Joshi, Y.K. (2013). Intestinal permeability and complications in liver cirrhosis: a prospective cohort study. Hepatol Res 43, 200–207.PubMedCrossRefGoogle Scholar
  18. Berstad, A., Arslan, G., and Folvik, G. (2000). Relationship between intestinal permeability and calprotectin concentration in gut lavage fluid. Scand J Gastroenterol 35, 64–69.PubMedCrossRefGoogle Scholar
  19. Bhattacharjee, S., and Lukiw, W.J. (2013). Alzheimer’s disease and the microbiome. Front Cell Neurosci 7, 153.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Biagi, E., Candela, M., Turroni, S., Garagnani, P., Franceschi, C., and Brigidi, P. (2013). Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res 69, 11–20.PubMedCrossRefGoogle Scholar
  21. Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., Pini, E., Nikkila, J., Monti, D., Satokari, R., Franceschi, C., Brigidi, P., and De Vos, W. (2010). Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5, e10667.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Boelen, E., Steinbusch, H.W., van der Ven, A.J., Grauls, G., Bruggeman, C.A., and Stassen, F.R. (2007). Chlamydia pneumoniae infection of brain cells: an in vitro study. Neurobiol Aging 28, 524–532.PubMedCrossRefGoogle Scholar
  23. Borjabad, A., and Volsky, D.J. (2012). Common transcriptional signatures in brain tissue from patients with HIV-associated neurocognitive disorders, Alzheimer’s disease, and Multiple Sclerosis. J Neuroimmune Pharmacol 7, 914–926.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Borre, Y.E., O’Keeffe, G.W., Clarke, G., Stanton, C., Dinan, T.G., and Cryan, J.F. (2014). Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med 20, 509–518.PubMedCrossRefGoogle Scholar
  25. Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Toth, M., Korecka, A., Bakocevic, N., Guan, N.L., Kundu, P., Gulyas, B., Halldin, C., Hultenby, K., Nilsson, H., Hebert, H., Volpe, B.T., Diamond, B., and Pettersson, S. (2014). The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6, 263ra158.Google Scholar
  26. Bravo, J.A., Julio-Pieper, M., Forsythe, P., Kunze, W., Dinan, T.G., Bienenstock, J., and Cryan, J.F. (2012). Communication between gastrointestinal bacteria and the nervous system. Curr Opin Pharmacol 12, 667–672.PubMedCrossRefGoogle Scholar
  27. Brenner, S.R. (2013). Blue-green algae or cyanobacteria in the intestinal micro-flora may produce neurotoxins such as Beta-N-methylamino-L-alanine (BMAA) which may be related to development of amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson-Dementia-Complex in humans and Equine Motor Neuron Disease in horses. Med Hypotheses 80, 103.PubMedCrossRefGoogle Scholar
  28. Bruce-Keller, A.J., Salbaum, J.M., Luo, M., Blanchard, E.t., Taylor, C.M., Welsh, D.A., and Berthoud, H.R. (2015). Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry 77, 607–615.PubMedCrossRefGoogle Scholar
  29. Butterfield, D.A., Perluigi, M., and Sultana, R. (2006). Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545, 39–50.PubMedCrossRefGoogle Scholar
  30. Cani, P.D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A.M., Delzenne, N.M., and Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481.PubMedCrossRefGoogle Scholar
  31. Carlino, D., De Vanna, M., and Tongiorgi, E. (2013). Is altered BDNF biosynthesis a general feature in patients with cognitive dysfunctions? Neuroscientist 19, 345–353.PubMedCrossRefGoogle Scholar
  32. Castaneda, A.E., Tuulio-Henriksson, A., Aronen, E.T., Marttunen, M., and Kolho, K.L. (2013). Cognitive functioning and depressive symptoms in adolescents with inflammatory bowel disease. World J Gastroenterol 19, 1611–1617.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chiu, W.C., Tsan, Y.T., Tsai, S.L., Chang, C.J., Wang, J.D., Chen, P.C., and Health Data Analysis in Taiwan Research Group. (2014). Hepatitis C viral infection and the risk of dementia. Eur J Neurol 21, 1068–e1059.PubMedCrossRefGoogle Scholar
  34. Cho, I., and Blaser, M.J. (2012). The human microbiome: at the interface of health and disease. Nat Rev Genet 13, 260–270.PubMedPubMedCentralGoogle Scholar
  35. Cirrito, J.R., Disabato, B.M., Restivo, J.L., Verges, D.K., Goebel, W.D., Sathyan, A., Hayreh, D., D'Angelo, G., Benzinger, T., Yoon, H., Kim, J., Morris, J.C., Mintun, M.A., and Sheline, Y.I. (2011). Serotonin signaling is associated with lower amyloid-beta levels and plaques in transgenic mice and humans. Proc Natl Acad Sci USA 108, 14968–14973.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Claesson, M.J., Cusack, S., O’Sullivan, O., Greene-Diniz, R., de Weerd, H., Flannery, E., Marchesi, J.R., Falush, D., Dinan, T., Fitzgerald, G., Stanton, C., van Sinderen, D., O’Connor, M., Harnedy, N., O’Connor, K., Henry, C., O’Mahony, D., Fitzgerald, A.P., Shanahan, F., Twomey, C., Hill, C., Ross, R.P., and O’Toole, P.W. (2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108, 4586–4591.PubMedCrossRefGoogle Scholar
  37. Claesson, M.J., Jeffery, I.B., Conde, S., Power, S.E., O’Connor, E.M., Cusack, S., Harris, H.M.B., Coakley, M., Lakshminarayanan, B., O'Sullivan, O., Fitzgerald, G.F., Deane, J., O’Connor, M., Harnedy, N., O’Connor, K., O'Mahony, D., van Sinderen, D., Wallace, M., Brennan, L., Stanton, C., Marchesi, J.R., Fitzgerald, A.P., Shanahan, F., Hill, C., Ross, R.P., and O’Toole, P.W. (2012). Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184.PubMedGoogle Scholar
  38. Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R.D., Shanahan, F., Dinan, T.G., and Cryan, J.F. (2013). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18, 666–673.PubMedCrossRefGoogle Scholar
  39. Clemente, J.C., Ursell, L.K., Parfrey, L.W., and Knight, R. (2012). The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Collins, S.M., Surette, M., and Bercik, P. (2012). The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10, 735–742.PubMedCrossRefGoogle Scholar
  41. Cookson, W.O.C.M., and Moffatt, M.F. (1997). Asthma: an epidemic in the absence of infection? Science 275, 41–42.PubMedCrossRefGoogle Scholar
  42. Cowan, T.E., Palmnas, M.S.A., Yang, J., Bomhof, M.R., Ardell, K.L., Reimer, R.A., Vogel, H.J., and Shearer, J. (2014). Chronic coffee consumption in the diet-induced obese rat: impact on gut microbiota and serum metabolomics. J Nutr Biochem 25, 489–495.PubMedCrossRefGoogle Scholar
  43. Cox, P.A., Davis, D.A., Mash, D.C., Metcalf, J.S., and Banack, S.A. (2016). Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proc Biol Sci 283, 20152397.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Crane, P.K., Walker, R., Hubbard, R.A., Li, G., Nathan, D.M., Zheng, H., Haneuse, S., Craft, S., Montine, T.J., Kahn, S.E., McCormick, W., McCurry, S.M., Bowen, J.D., and Larson, E.B. (2013). Glucose levels and risk of dementia. N Engl J Med 369, 540–548.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Crogan, N.L., and Evans, B.C. (2007). Clostridium difficile: an emerging epidemic in nursing homes. Geriatr Nurs 28, 161–164.PubMedCrossRefGoogle Scholar
  46. Cryan, J.F., and Dinan, T.G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13, 701–712.PubMedCrossRefGoogle Scholar
  47. Cryan, J.F., and O’Mahony, S.M. (2011). The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23, 187–192.PubMedCrossRefGoogle Scholar
  48. D’Andrea, M.R. (2005). Add Alzheimer’s disease to the list of autoimmune diseases. Med Hypotheses 64, 458–463.PubMedCrossRefGoogle Scholar
  49. Davari, S., Talaei, S.A., Alaei, H., and Salami, M. (2013). Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome-gut-brain axis. Neuroscience 240, 287–296.PubMedCrossRefGoogle Scholar
  50. Deane, R., Wu, Z.H., and Zlokovic, B.V. (2004). RAGE (Yin) versus LRP (Yang) balance regulates Alzheimer amyloid beta-peptide clearance through transport across the blood-brain barrier. Stroke 35, 2628–2631.PubMedCrossRefGoogle Scholar
  51. Dekaban, A.S. (1978). Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol 4, 345–356.PubMedCrossRefGoogle Scholar
  52. Del Chierico, F., Vernocchi, P., Dallapiccola, B., and Putignani, L. (2014). Mediterranean diet and health: food effects on gut microbiota and disease control. Int J of Mol Sci 15, 11678–11699.CrossRefGoogle Scholar
  53. Diaz Heijtz, R., Wang, S., Anuar, F., Qian, Y., Bjorkholm, B., Samuelsson, A., Hibberd, M.L., Forssberg, H., and Pettersson, S. (2011). Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108, 3047–3052.PubMedCrossRefGoogle Scholar
  54. Duthie, S.J., Whalley, L.J., Collins, A.R., Leaper, S., Berger, K., and Deary, I.J. (2002). Homocysteine, B vitamin status, and cognitive function in the elderly. Am J Clin Nutr 75, 908–913.PubMedGoogle Scholar
  55. Erny, D., Hrabe de Angelis, A.L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H., Mahlakoiv, T., Jakobshagen, K., Buch, T., Schwierzeck, V., Utermohlen, O., Chun, E., Garrett, W.S., McCoy, K.D., Diefenbach, A., Staeheli, P., Stecher, B., Amit, I., and Prinz, M. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18, 965–977.PubMedCrossRefGoogle Scholar
  56. Eskelinen, M.H., Ngandu, T., Helkala, E.L., Tuomilehto, J., Nissinen, A., Soininen, H., and Kivipelto, M. (2008). Fat intake at midlife and cognitive impairment later in life: a population-based CAIDE study. Int J Geriatr Psychiatry 23, 741–747.PubMedCrossRefGoogle Scholar
  57. Eskelinen, M.H., Ngandu, T., Tuomilehto, J., Soininen, H., and Kivipelto, M. (2009). Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis 16, 85–91.PubMedGoogle Scholar
  58. Evenepoel, P., Meijers, B.K.I., Bammens, B.R.M., and Verbeke, K. (2009). Uremic toxins originating from colonic microbial metabolism. Kidney Int 76, S12–S19.CrossRefGoogle Scholar
  59. Faria, A.M., de Moraes, S.M., de Freitas, L.H.F., Speciali, E., Soares, T.F., Figueiredo-Neves, S.P., Vitelli-Avelar, D.M., Martins, M.A., Barbosa, K.V.B.D., Soares, E.B., Sathler-Avelar, R., Peruhype-Magalhaes, V., Cardoso, G.M., Comin, F., Teixeira, R., Eloi-Santos, S.M., Queiroz, D.M.M., Correa-Oliveira, R., Bauer, M.E., Teixeira-Carvalho, A., and Martins-Filho, O.A. (2008). Variation rhythms of lymphocyte subsets during healthy aging. Neuroimmunomodulation 15, 365–379.PubMedCrossRefGoogle Scholar
  60. Finegold, S.M., Dowd, S.E., Gontcharova, V., Liu, C.X., Henley, K.E., Wolcott, R.D., Youn, E., Summanen, P.H., Granpeesheh, D., Dixon, D., Liu, M., Molitoris, D.R., and Green, J.A. (2010). Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16, 444–453.PubMedCrossRefGoogle Scholar
  61. Fontan-Lozano, A., Saez-Cassanelli, J.L., Inda, M.C., Santos-Arteaga, M.D.L., Sierra-Dominguez, S.A., Lopez-Lluch, G., Delgado-Garcia, J.M., and Carrion, A.M. (2007). Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B Subunits of the NMDA receptor. J Neurosci 27, 10185–10195.PubMedCrossRefGoogle Scholar
  62. Foster, J.A. (2013). Gut feelings: bacteria and the brain. Cerebrum 2013, 9.PubMedPubMedCentralGoogle Scholar
  63. Fox, M., Knapp, L.A., Andrews, P.W., and Fincher, C.L. (2013). Hygiene and the world distribution of Alzheimer’s disease: epidemiological evidence for a relationship between microbial environment and age-adjusted disease burden. Evol Med Public Health 2013, 173–186.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Franceschi, C. (2007). Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutr Rev 65, S173–S176.PubMedCrossRefGoogle Scholar
  65. Gardener, S., Gu, Y., Rainey-Smith, S.R., Keogh, J.B., Clifton, P.M., Mathieson, S.L., Taddei, K., Mondal, A., Ward, V.K., Scarmeas, N., Barnes, M., Ellis, K.A., Head, R., Masters, C.L., Ames, D., Macaulay, S.L., Rowe, C.C., Szoeke, C., Martins, R.N., and Grp, A.R. (2012). Adherence to a Mediterranean diet and Alzheimer’s disease risk in an Australian population. Transl Psychiat 2, e164.CrossRefGoogle Scholar
  66. Gareau, M.G., Wine, E., Rodrigues, D.M., Cho, J.H., Whary, M.T., Philpott, D.J., MacQueen, G., and Sherman, P.M. (2011). Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60, 307–317.PubMedCrossRefGoogle Scholar
  67. Gerard, H.C., Dreses-Werringloer, U., Wildt, K.S., Deka, S., Oszust, C., Balin, B.J., Frey, W.H., Bordayo, E.Z., Whittum-Hudson, J.A., and Hudson, A.P. (2006). Chlamydophila (Chlamydia) pneumoniae in the Alzheimer’s brain. FEMS Immunol Med Microbiol 48, 355–366.PubMedCrossRefGoogle Scholar
  68. Gomborone, J.E., Dewsnap, P.A., Libby, G.W., and Farthing, M.J.G. (1993). Selective affective biasing in recognition memory in the irritable-bowel-syndrome. Gut 34, 1230–1233.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gregg, R., Smith, C.M., Clark, F.J., Dunnion, D., Khan, N., Chakraverty, R., Nayak, L., and Moss, P.A. (2005). The number of human peripheral blood CD4+ CD25(high) regulatory T cells increases with age. Clin Exp Immunol 140, 540–546.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Gu, Y.A., Nieves, J.W., Stern, Y., Luchsinger, J.A., and Scarmeas, N. (2010). Food combination and Alzheimer disease risk a protective diet. Arch Neurol 67, 699–706.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Guigoz, Y., Dore, J., and Schiffrina, E.J. (2008). The inflammatory status of old age can be nurtured from the intestinal environment. Curr Opin Clin Nutr Metab Care 11, 13–20.PubMedCrossRefGoogle Scholar
  72. Heintz, C., and Mair, W. (2014). You are what you host: microbiome modulation of the aging process. Cell 156, 408–411.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hendrie, H.C., Osuntokun, B.O., Hall, K.S., Ogunniyi, A.O., Hui, S.L., Unverzagt, F.W., Gureje, O., Rodenberg, C.A., Baiyewu, O., and Musick, B.S. (1995). Prevalence of Alzheimer’s disease and dementia in two communities: Nigerian Africans and African Americans. Am J Psychiatry 152, 1485–1492.PubMedCrossRefGoogle Scholar
  74. Hill, J.M., and Lukiw, W.J. (2015). Microbial-generated amyloids and Alzheimer’s disease (AD). Front Aging Neurosci 7, 9.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Holmqvist, S., Chutna, O., Bousset, L., Aldrin-Kirk, P., Li, W., Bjorklund, T., Wang, Z.Y., Roybon, L., Melki, R., and Li, J.Y. (2014). Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 128, 805–820.PubMedCrossRefGoogle Scholar
  76. Hooper, L.V., and Gordon, J.I. (2001). Commensal host-bacterial relationships in the gut. Science 292, 1115–1118.PubMedCrossRefGoogle Scholar
  77. Huang, W.S., Yang, T.Y., Shen, W.C., Lin, C.L., Lin, M.C., and Kao, C.H. (2014). Association between Helicobacter pylori infection and dementia. J Clin Neurosci 21, 1355–1358.PubMedCrossRefGoogle Scholar
  78. Hughes, T.F., Andel, R., Small, B.J., Borenstein, A.R., Mortimer, J.A., Wolk, A., Johansson, B., Fratiglioni, L., Pedersen, N.L., and Gatz, M. (2010). Midlife fruit and vegetable consumption and risk of dementia in later life in Swedish twins. Am J Geriatr Psychiatry 18, 413–420.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Human Microbiome Project Consortium. (2012). A framework for human microbiome research. Nature 486, 215–221.CrossRefGoogle Scholar
  80. Itzhaki, R.F., and Wozniak, M.A. (2008). Herpes simplex virus type 1 in Alzheimer’s disease: the enemy within. J Alzheimers Dis 13, 393–405.PubMedGoogle Scholar
  81. Jaeger, L.B., Dohgu, S., Sultana, R., Lynch, J.L., Owen, J.B., Erickson, M.A., Shah, G.N., Price, T.O., Fleegal-Demotta, M.A., Butterfiled, D.A., and Banks, W.A. (2009). Lipopolysaccharide alters the blood-brain barrier transport of amyloid beta protein: a mechanism for inflammation in the progression of Alzheimer’s disease. Brain Behav Immun 23, 507–517.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Jakobsson, H.E., Rodriguez-Pineiro, A.M., Schutte, A., Ermund, A., Boysen, P., Bemark, M., Sommer, F., Backhed, F., Hansson, G.C., and Johansson, M.E.V. (2015). The composition of the gut microbiota shapes the colon mucus barrier. Embo Rep 16, 164–177.PubMedCrossRefGoogle Scholar
  83. Jaquet, M., Rochat, I., Moulin, J., Cavin, C., and Bibiloni, R. (2009). Impact of coffee consumption on the gut microbiota: a human volunteer study. Int J Food Microbiol 130, 117–121.PubMedCrossRefGoogle Scholar
  84. Jarvis, D., Chinn, S., Luczynska, C., and Burney, P. (1997). The association of family size with atopy and atopic disease. Clin Exp Allergy 27, 240–245.PubMedCrossRefGoogle Scholar
  85. Kahn, M.S., Kranjac, D., Alonzo, C.A., Haase, J.F., Cedillos, R.O., McLinden, K.A., Boehm, G.W., and Chumley, M.J. (2012). Prolonged elevation in hippocampal A beta and cognitive deficits following repeated endotoxin exposure in the mouse. Behav Brain Res 229, 176–184.PubMedCrossRefGoogle Scholar
  86. Katan, M., Moon, Y.P., Paik, M.C., Sacco, R.L., Wright, C.B., and Elkind, M.S.V. (2013). Infectious burden and cognitive function The Northern Manhattan Study. Neurology 80, 1209–1215.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kelly, J.R., Kennedy, P.J., Cryan, J.F., Dinan, T.G., Clarke, G., and Hyland, N. (2015). Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 9, 392.PubMedPubMedCentralGoogle Scholar
  88. Kimball, B.A., Wilson, D.A., and Wesson, D.W. (2016). Alterations of the volatile metabolome in mouse models of Alzheimer’s disease. Sci Rep 6, 19495.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Knight, E.M., Martins, I.V.A., Gumusgoz, S., Allan, S.M., and Lawrence, C.B. (2014). High-fat diet-induced memory impairment in triple-transgenic Alzheimer’s disease (3xTgAD) mice is independent of changes in amyloid and tau pathology. Neurobiol Aging 35, 1821–1832.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kountouras, J., Boziki, M., Zavos, C., Gavalas, E., Giartza-Taxidou, E., Venizelos, I., Deretzi, G., Grigoriadis, N., Tsiaousi, E., and Vardaka, E. (2012). A potential impact of chronic Helicobacter pylori infection on Alzheimer’s disease pathobiology and course. Neurobiol Aging 33, e3–4.PubMedCrossRefGoogle Scholar
  91. Kountouras, J., Gavalas, E., Zavos, C., Stergiopoulos, C., Chatzopoulos, D., Kapetanakis, N., and Gisakis, D. (2007). Alzheimer’s disease and Helicobacter pylori infection: defective immune regulation and apoptosis as proposed common links. Med Hypotheses 68, 378–388.PubMedCrossRefGoogle Scholar
  92. Laitinen, M.H., Ngandu, T., Rovio, S., Helkala, E.L., Uusitalo, U., Viitanen, M., Nissinen, A., Tuomilehto, J., Soininen, H., and Kivipelto, M. (2006). Fat intake at midlife and risk of dementia and Alzheimer’s disease: a population-based study. Dement Geriatr Cogn Disord 22, 99–107.PubMedCrossRefGoogle Scholar
  93. Lakhan, S.E., Caro, M., and Hadzimichalis, N. (2013). NMDA receptor activity in neuropsychiatric disorders. Front Psychiatry 4, 52.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lambert, J.C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., Bellenguez, C., DeStafano, A.L., Bis, J.C., Beecham, G.W., Grenier-Boley, B., Russo, G., Thorton-Wells, T.A., Jones, N., Smith, A.V., Chouraki, V., Thomas, C., Ikram, M.A., Zelenika, D., Vardarajan, B.N., Kamatani, Y., Lin, C.F., Gerrish, A., Schmidt, H., Kunkle, B., Dunstan, M.L., Ruiz, A., Bihoreau, M.T., Choi, S.H., Reitz, C., Pasquier, F., Cruchaga, C., Craig, D., Amin, N., Berr, C., Lopez, O.L., De Jager, P.L., Deramecourt, V., Johnston, J.A., Evans, D., Lovestone, S., Letenneur, L., Moron, F.J., Rubinsztein, D.C., Eiriksdottir, G., Sleegers, K., Goate, A.M., Fievet, N., Huentelman, M.W., Gill, M., Brown, K., Kamboh, M.I., Keller, L., Barberger-Gateau, P., McGuiness, B., Larson, E.B., Green, R., Myers, A.J., Dufouil, C., Todd, S., Wallon, D., Love, S., Rogaeva, E., Gallacher, J., St George-Hyslop, P., Clarimon, J., Lleo, A., Bayer, A., Tsuang, D.W., Yu, L., Tsolaki, M., Bossu, P., Spalletta, G., Proitsi, P., Collinge, J., Sorbi, S., Sanchez-Garcia, F., Fox, N.C., Hardy, J., Deniz Naranjo, M.C., Bosco, P., Clarke, R., Brayne, C., Galimberti, D., Mancuso, M., Matthews, F., European Alzheimer’s Disease Initiative, Genetic and Environmental Risk in Alzheimer’s Disease, Alzheimer’s Disease Genetic Consortium, Cohorts for Heart and Aging Research in Genomic Epidemiology, Moebus, S., Mecocci, P., Del Zompo, M., Maier, W., Hampel, H., Pilotto, A., Bullido, M., Panza, F., Caffarra, P., Nacmias, B., Gilbert, J.R., Mayhaus, M., Lannefelt, L., Hakonarson, H., Pichler, S., Carrasquillo, M.M., Ingelsson, M., Beekly, D., Alvarez, V., Zou, F., Valladares, O., Younkin, S.G., Coto, E., Hamilton-Nelson, K.L., Gu, W., Razquin, C., Pastor, P., Mateo, I., Owen, M.J., Faber, K.M., Jonsson, P.V., Combarros, O., O'Donovan, M.C., Cantwell, L.B., Soininen, H., Blacker, D., Mead, S., Mosley, T.H., Jr., Bennett, D.A., Harris, T.B., Fratiglioni, L., Holmes, C., de Bruijn, R.F., Passmore, P., Montine, T.J., Bettens, K., Rotter, J.I., Brice, A., Morgan, K., Foroud, T.M., Kukull, W.A., Hannequin, D., Powell, J.F., Nalls, M.A., Ritchie, K., Lunetta, K.L., Kauwe, J.S., Boerwinkle, E., Riemenschneider, M., Boada, M., Hiltuenen, M., Martin, E.R., Schmidt, R., Rujescu, D., Wang, L.S., Dartigues, J.F., Mayeux, R., Tzourio, C., Hofman, A., Nothen, M.M., Graff, C., Psaty, B.M., Jones, L., Haines, J.L., Holmans, P.A., Lathrop, M., Pericak-Vance, M.A., Launer, L.J., Farrer, L.A., van Duijn, C.M., Van Broeckhoven, C., Moskvina, V., Seshadri, S., Williams, J., Schellenberg, G.D., and Amouyel, P. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45, 1452–1458.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lanctot, K.L., Herrmann, N., Mazzotta, P., Khan, L.R., and Ingber, N. (2004). GABAergic function in Alzheimer’s disease: evidence for dysfunction and potential as a therapeutic target for the treatment of behavioural and psychological symptoms of dementia. Can J Psychiat 49, 439–453.Google Scholar
  96. LaRue, B., Hogg, E., Sagare, A., Jovanovic, S., Maness, L., Maurer, C., Deane, R., and Zlokovic, B.V. (2004). Method for measurement of the blood-brain barrier permeability in the perfused mouse brain: application to amyloid-beta peptide in wild type and Alzheimer’s Tg2576 mice. J Neurosci Methods 138, 233–242.PubMedCrossRefGoogle Scholar
  97. Leblhuber, F., Geisler, S., Steiner, K., Fuchs, D., and Schutz, B. (2015). Elevated fecal calprotectin in patients with Alzheimer’s dementia indicates leaky gut. J Neural Transm 122, 1319–1322.PubMedCrossRefGoogle Scholar
  98. Lee, J.W., Lee, Y.K., Yuk, D.Y., Choi, D.Y., Ban, S.B., Oh, K.W., and Hong, J.T. (2008). Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 5, 37.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ley, R.E. (2015). The gene-microbe link. Nature 518, S7.PubMedCrossRefGoogle Scholar
  100. Ley, R.E., Turnbaugh, P.J., Klein, S., and Gordon, J.I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023.PubMedCrossRefGoogle Scholar
  101. Li, F., and Tsien, J.Z. (2009). Memory and the NMDA Receptors. N Engl J Med 361, 302–303.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Liang, S., Wang, T., Hu, X., Luo, J., Li, W., Wu, X., Duan, Y., and Jin, F. (2015). Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310, 561–577.PubMedCrossRefGoogle Scholar
  103. Little, C.S., Hammond, C.J., MacIntyre, A., Balin, B.J., and Appelt, D.M. (2004). Chlamydia pneumoniae induces Alzheimer-like amyloid plaques in brains of BALB/c mice. Neurobiol Aging 25, 419–429.PubMedCrossRefGoogle Scholar
  104. Liu, T.Y., Hougen, H., Vollmer, A.C., and Hiebert, S.M. (2012). Gut bacteria profiles of Mus musculus at the phylum and family levels are influenced by saturation of dietary fatty acids. Anaerobe 18, 331–337.PubMedCrossRefGoogle Scholar
  105. Llibre Rodriguez, J.J., Ferri, C.P., Acosta, D., Guerra, M., Huang, Y., Jacob, K.S., Krishnamoorthy, E.S., Salas, A., Sosa, A.L., Acosta, I., Dewey, M.E., Gaona, C., Jotheeswaran, A.T., Li, S., Rodriguez, D., Rodriguez, G., Kumar, P.S., Valhuerdi, A., Prince, M., and Dementia Research, G. (2008). Prevalence of dementia in Latin America, India, and China: a population-based cross-sectional survey. Lancet 372, 464–474.PubMedCrossRefGoogle Scholar
  106. Lukiw, W.J., Cui, J.G., Yuan, L.Y., Bhattacharjee, P.S., Corkern, M., Clement, C., Kammerman, E.M., Ball, M.J., Zhao, Y., Sullivan, P.M., and Hill, J.M. (2010). Acyclovir or Abeta42 peptides attenuate HSV-1-induced miRNA-146a levels in human primary brain cells. Neuroreport 21, 922–927.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Luo, J., Wang, T., Liang, S., Hu, X., Li, W., and Jin, F. (2014). Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat. Sci China Life Sci 57, 327–335.PubMedCrossRefGoogle Scholar
  108. Lurain, N.S., Hanson, B.A., Martinson, J., Leurgans, S.E., Landay, A.L., Bennett, D.A., and Schneider, J.A. (2013). Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J Infect Dis 208, 564–572.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Lynch, N.R., Hagel, I., Perez, M., Di Prisco, M.C., Lopez, R., and Alvarez, N. (1993). Effect of anthelmintic treatment on the allergic reactivity of children in a tropical slum. J Allergy Clin Immunol 92, 404–411.PubMedCrossRefGoogle Scholar
  110. Mancuso, R., Baglio, F., Cabinio, M., Calabrese, E., Hernis, A., Nemni, R., and Clerici, M. (2014). Titers of herpes simplex virus type 1 antibodies positively correlate with grey matter volumes in Alzheimer’s disease. J Alzheimers Dis 38, 741–745.PubMedGoogle Scholar
  111. Marlow, G., Ellett, S., Ferguson, I.R., Zhu, S.T., Karunasinghe, N., Jesuthasan, A.C., Han, D.Y., Fraser, A.G., and Ferguson, L.R. (2013). Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn’s disease patients. Hum Genomics 7, 24.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Martin, B., Mattson, M.P., and Maudsley, S. (2006). Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev 5, 332–353.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Masaki, K.H., Losonczy, K.G., Izmirlian, G., Foley, D.J., Ross, G.W., Petrovitch, H., Havlik, R., and White, L.R. (2000). Association of vitamin E and C supplement use with cognitive function and dementia in elderly men. Neurology 54, 1265–1272.PubMedCrossRefGoogle Scholar
  114. Matricardi, P.M., Franzinelli, F., Franco, A., Caprio, G., Murru, F., Cioffi, D., Ferrigno, L., Palermo, A., Ciccarelli, N., and Rosmini, F. (1998). Sibship size, birth order, and atopy in 11,371 Italian young men. J Allergy Clin Immunol 101, 439–444.PubMedCrossRefGoogle Scholar
  115. Matsumoto, M., Kibe, R., Ooga, T., Aiba, Y., Sawaki, E., Koga, Y., and Benno, Y. (2013). Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study. Front Syst Neurosci 7, 9.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., Bisson, J.F., Rougeot, C., Pichelin, M., Cazaubiel, M., and Cazaubiel, J.M. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105, 755–764.PubMedCrossRefGoogle Scholar
  117. Miklossy, J. (2011). Emerging roles of pathogens in Alzheimer disease. Expert Rev Mol Med 13, e30.PubMedCrossRefGoogle Scholar
  118. Minter, M.R., Zhang, C., Leone, V., Ringus, D.L., Zhang, X.Q., Oyler-Castrillo, P., Musch, M.W., Liao, F., Ward, J.F., Holtzman, D.M., Chang, E.B., Tanzi, R.E., and Sisodia, S.S. (2016). Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amylodosis in a murine model of Alzheimer’s disease. Sci Rep 6, 30028.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Moco, S., Martin, F.P.J., and Rezzi, S. (2012). Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J Proteome Res 11, 4781–4790.PubMedCrossRefGoogle Scholar
  120. Morris, M.C., Evans, D.A., Bienias, J.L., Tangney, C.C., Bennett, D.A., Aggarwal, N., Wilson, R.S., and Scherr, P.A. (2002). Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. JAMA 287, 3230–3237.PubMedCrossRefGoogle Scholar
  121. Morris, M.C., Evans, D.A., Bienias, J.L., Tangney, C.C., Bennett, D.A., Wilson, R.S., Aggarwal, N., and Schneider, J. (2003). Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 60, 940–946.PubMedCrossRefGoogle Scholar
  122. Mulligan, V.K., and Chakrabartty, A. (2013). Protein misfolding in the late-onset neurodegenerative diseases: common themes and the unique case of amyotrophic lateral sclerosis. Proteins 81, 1285–1303.PubMedCrossRefGoogle Scholar
  123. Murphy, M.C., and Fox, E.A. (2010). Mice deficient in brain-derived neurotrophic factor have altered development of gastric vagal sensory innervation. J Comp Neurol 518, 2934–2951.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Naseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linlokken, A., Wilson, R., and Rudi, K. (2014). Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 26, 1155–1162.PubMedCrossRefGoogle Scholar
  125. Neufeld, K.M., Kang, N., Bienenstock, J., and Foster, J.A. (2011). Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23, 255–264, e119.PubMedCrossRefGoogle Scholar
  126. O'Toole, P.W., and Claesson, M.J. (2010). Gut microbiota: changes throughout the lifespan from infancy to elderly. Int Dairy J 20, 281–291.CrossRefGoogle Scholar
  127. Ohsawa, K., Uchida, N., Ohki, K., Nakamura, Y., and Yokogoshi, H. (2015). Lactobacillus helveticus-fermented milk improves learning and memory in mice. Nutr Neurosci 18, 232–240.PubMedCrossRefGoogle Scholar
  128. Patel, N.V., Gordon, M.N., Connor, K.E., Good, R.A., Engelman, R.W., Mason, J., Morgan, D.G., Morgan, T.E., and Finch, C.E. (2005). Caloric restriction attenuates A beta-deposition in Alzheimer transgenic models. Neurobiol Aging 26, 995–1000.PubMedCrossRefGoogle Scholar
  129. Pautas, E., Cherin, P., De Jaeger, C., and Godeau, P. (1999). Vitamin B12 deficiency in the elderly. Presse Med 28, 1767–1770.PubMedGoogle Scholar
  130. Pellicano, M., Larbi, A., Goldeck, D., Colonna-Romano, G., Buffa, S., Bulati, M., Rubino, G., Iemolo, F., Candore, G., Caruso, C., Derhovanessian, E., and Pawelec, G. (2012). Immune profiling of Alzheimer patients. J Neuroimmunol 242, 52–59.PubMedCrossRefGoogle Scholar
  131. Pisa, D., Alonso, R., Rabano, A., Rodal, I., and Carrasco, L. (2015). Different brain regions are infected with fungi in Alzheimer’s disease. Sci Rep 5, 15015.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Poole, S., Singhrao, S.K., Kesavalu, L., Curtis, M.A., and Crean, S. (2013). Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue. J Alzheimers Dis 36, 665–677.PubMedGoogle Scholar
  133. Prandota, J. (2014). Possible link between toxoplasma gondii and the anosmia associated with neurodegenerative diseases. Am J Alzheimers Dis 29, 205–214.CrossRefGoogle Scholar
  134. Prasad, S., Dhiman, R.K., Duseja, A., Chawla, Y.K., Sharma, A., and Agarwal, R. (2007). Lactulose improves cognitive functions and health-related quality of life in patients with cirrhosis who have minimal hepatic encephalopathy. Hepatology 45, 549–559.PubMedCrossRefGoogle Scholar
  135. Prescott, S.L. (2008). Promoting tolerance in early life: pathways and pitfalls. Curr Allergy Clin Im 21, 64–69.Google Scholar
  136. Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., and Ferri, C.P. (2013). The global prevalence of dementia: a systematic review and metaanalysis. Alzheimer’s Dementia 9, 63–75.PubMedCrossRefGoogle Scholar
  137. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D.R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J.M., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H.B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Dore, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., Meta, H.I.T.C., Bork, P., Ehrlich, S.D., and Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., Lu, D., Wu, P., Dai, Y., Sun, X., Li, Z., Tang, A., Zhong, S., Li, X., Chen, W., Xu, R., Wang, M., Feng, Q., Gong, M., Yu, J., Zhang, Y., Zhang, M., Hansen, T., Sanchez, G., Raes, J., Falony, G., Okuda, S., Almeida, M., LeChatelier, E., Renault, P., Pons, N., Batto, J.M., Zhang, Z., Chen, H., Yang, R., Zheng, W., Li, S., Yang, H., Wang, J., Ehrlich, S.D., Nielsen, R., Pedersen, O., Kristiansen, K., and Wang, J. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60.PubMedCrossRefGoogle Scholar
  139. Qin, N., Yang, F.L., Li, A., Prifti, E., Chen, Y.F., Shao, L., Guo, J., Le Chatelier, E., Yao, J., Wu, L.J., Zhou, J.W., Ni, S.J., Liu, L., Pons, N., Batto, J.M., Kennedy, S.P., Leonard, P., Yuan, C.H., Ding, W.C., Chen, Y.T., Hu, X.J., Zheng, B.W., Qian, G.R., Xu, W., Ehrlich, S.D., Zheng, S.S., and Li, L.J. (2014). Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64.PubMedCrossRefGoogle Scholar
  140. Quadri, P., Fragiacomo, C., Pezzati, R., Zanda, E., Forloni, G., Tettamanti, M., and Lucca, U. (2004). Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am J Clin Nutr 80, 114–122.PubMedGoogle Scholar
  141. Refolo, L.M., Malester, B., LaFrancois, J., Bryant-Thomas, T., Wang, R., Tint, G.S., Sambamurti, K., Duff, K., and Pappolla, M.A. (2001). A high fat, high cholesterol diet accelerates beta-amyloid accumulation in the CNS of a transgenic mouse model of Alzheimer’s disease. Alzheimer’s Disease, 433–447.Google Scholar
  142. Reitz, C., Brayne, C., and Mayeux, R. (2011). Epidemiology of Alzheimer disease. Nat Rev Neurol 7, 137–152.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Romagnani, S. (2004). The increased prevalence of allergy and the hygiene hypothesis: missing immune deviation, reduced immune suppression, or both? Immunology 112, 352–363.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Rook, G.A. (2007). The hygiene hypothesis and the increasing prevalence of chronic inflammatory disorders. Trans R Soc Trop Med Hyg 101, 1072–1074.PubMedCrossRefGoogle Scholar
  145. Rook, G.A. (2012). Hygiene hypothesis and autoimmune diseases. Clin Rev Allergy Immunol 42, 5–15.PubMedCrossRefGoogle Scholar
  146. Rook, G.A., and Lowry, C.A. (2008). The hygiene hypothesis and psychiatric disorders. Trends Immunol 29, 150–158.PubMedCrossRefGoogle Scholar
  147. Rook, G.A.W. (2009). Introduction: the changing microbial environment, Darwinian medicine and the hygiene hypothesis. The Hygiene Hypothesis and Darwinian Medicine. (Basel: Springer) pp. 1–27.CrossRefGoogle Scholar
  148. Roubaud-Baudron, C., Krolak-Salmon, P., Quadrio, I., Megraud, F., and Salles, N. (2012). Impact of chronic Helicobacter pylori infection on Alzheimer’s disease: preliminary results. Neurobiol Aging 33, e11–e19.PubMedCrossRefGoogle Scholar
  149. Sampson, T.R., and Mazmanian, S.K. (2015). Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17, 565–576.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Saresella, M., Calabrese, E., Marventano, I., Piancone, F., Gatti, A., Calvo, M.G., Nemni, R., and Clerici, M. (2010). PD1 negative and PD1 positive CD4+T regulatory cells in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 21, 927–938.PubMedGoogle Scholar
  151. Savignac, H.M., Tramullas, M., Kiely, B., Dinan, T.G., and Cryan, J.F. (2015). Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav Brain Res 287, 59–72.PubMedCrossRefGoogle Scholar
  152. Scarmeas, N., Stern, Y., Tang, M.X., Mayeux, R., and Luchsinger, J.A. (2006). Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol 59, 912–921.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Scheperjans, F., Aho, V., Pereira, P.A.B., Koskinen, K., Paulin, L., Pekkonen, E., Haapaniemi, E., Kaakkola, S., Eerola-Rautio, J., Pohja, M., Kinnunen, E., Murros, K., and Auvinen, P. (2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30, 350–358.PubMedCrossRefGoogle Scholar
  154. Schuijt, T.J., Lankelma, J.M., Scicluna, B.P., de Sousa, E.M.F., Roelofs, J.J., de Boer, J.D., Hoogendijk, A.J., de Beer, R., de Vos, A., Belzer, C., de Vos, W.M., van der Poll, T., and Wiersinga, W.J. (2016). The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 65, 575–583.PubMedCrossRefGoogle Scholar
  155. Schwarz, M.J., Chiang, S., Muller, N., and Ackenheil, M. (2001). T-helper-1 and T-helper-2 responses in psychiatric disorders. Brain Behav Immun 15, 340–370.PubMedCrossRefGoogle Scholar
  156. Sekirov, I., Tam, N.M., Jogova, M., Robertson, M.L., Li, Y., Lupp, C., and Finlay, B.B. (2008). Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun 76, 4726–4736.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Sidhu, S.S., Goyal, O., Mishra, B.P., Sood, A., Chhina, R.S., and Soni, R.K. (2011). Rifaximin improves psychometric performance and health-related quality of life in patients with minimal hepatic encephalopathy (the RIME trial). Am J Gastroenterol 106, 307–316.PubMedCrossRefGoogle Scholar
  158. Solakivi, T., Kaukinen, K., Kunnas, T., Lehtimaki, T., Maki, M., and Nikkari, S.T. (2011). Serum fatty acid profile in subjects with irritable bowel syndrome. Scand J Gastroenterol 46, 299–303.PubMedCrossRefGoogle Scholar
  159. Solas, M., Puerta, E., and Ramirez, M.J. (2015). Treatment options in Alzheimer’s disease: the GABA story. Curr Pharm Des 21, 4960–4971.PubMedCrossRefGoogle Scholar
  160. Solfrizzi, V., Colacicco, A.M., D'Introno, A., Capurso, C., Torres, F., Rizzo, C., Capurso, A., and Panza, F. (2006). Dietary intake of unsaturated fatty acids and age-related cognitive decline: a 8.5-year follow-up of the Italian Longitudinal Study on Aging. Neurobiol Aging 27, 1694–1704.PubMedCrossRefGoogle Scholar
  161. Sowell, E.R., Peterson, B.S., Thompson, P.M., Welcome, S.E., Henkenius, A.L., and Toga, A.W. (2003). Mapping cortical change across the human life span. Nat Neurosci 6, 309–315.PubMedCrossRefGoogle Scholar
  162. Strachan, D.P. (1989). Hay fever, hygiene, and household size. BMJ 299, 1259–1260.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Strandberg, T.E., Pitkala, K.H., Linnavuori, K.H., and Tilvis, R.S. (2003). Impact of viral and bacterial burden on cognitive impairment in elderly persons with cardiovascular diseases. Stroke 34, 2126–2131.PubMedCrossRefGoogle Scholar
  164. Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.N., Kubo, C., and Koga, Y. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol-London 558, 263–275.PubMedPubMedCentralCrossRefGoogle Scholar
  165. Tilg, H., and Moschen, A.R. (2014). Microbiota and diabetes: an evolving relationship. Gut 63, 1513–1521.PubMedCrossRefGoogle Scholar
  166. Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., Guyonnet, D., Legrain-Raspaud, S., Trotin, B., Naliboff, B., and Mayer, E.A. (2013). Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144, 1394–1401.PubMedCrossRefGoogle Scholar
  167. Tran, L., and Greenwood-Van Meerveld, B. (2013). Age-associated remodeling of the intestinal epithelial barrier. J Gerontol A Biol Sci Med Sci 68, 1045–1056.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Tully, A.M., Roche, H.M., Doyle, R., Fallon, C., Bruce, I., Lawlor, B., Coakley, D., and Gibney, M.J. (2003). Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer’s disease: a case-control study. Br J Nutr 89, 483–489.PubMedCrossRefGoogle Scholar
  169. Turner, J.R. (2009). Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9, 799–809.PubMedCrossRefGoogle Scholar
  170. Vanhanen, M., Kuusisto, J., Koivisto, K., Mykkanen, L., Helkala, E.L., Hanninen, T., Riekkinen, P., Sr., Soininen, H., and Laakso, M. (1999). Type-2 diabetes and cognitive function in a non-demented population. Acta Neurol Scand 100, 97–101.PubMedCrossRefGoogle Scholar
  171. Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., Gocayne, J.D., Amanatides, P., Ballew, R.M., Huson, D.H., Wortman, J.R., Zhang, Q., Kodira, C.D., Zheng, X.H., Chen, L., Skupski, M., Subramanian, G., Thomas, P.D., Zhang, J., Gabor Miklos, G.L., Nelson, C., Broder, S., Clark, A.G., Nadeau, J., McKusick, V.A., Zinder, N., Levine, A.J., Roberts, R.J., Simon, M., Slayman, C., Hunkapiller, M., Bolanos, R., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Florea, L., Halpern, A., Hannenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington, K., Abu-Threideh, J., Beasley, E., Biddick, K., Bonazzi, V., Brandon, R., Cargill, M., Chandramouliswaran, I., Charlab, R., Chaturvedi, K., Deng, Z., Di Francesco, V., Dunn, P., Eilbeck, K., Evangelista, C., Gabrielian, A.E., Gan, W., Ge, W., Gong, F., Gu, Z., Guan, P., Heiman, T.J., Higgins, M.E., Ji, R.R., Ke, Z., Ketchum, K.A., Lai, Z., Lei, Y., Li, Z., Li, J., Liang, Y., Lin, X., Lu, F., Merkulov, G.V., Milshina, N., Moore, H.M., Naik, A.K., Narayan, V.A., Neelam, B., Nusskern, D., Rusch, D.B., Salzberg, S., Shao, W., Shue, B., Sun, J., Wang, Z., Wang, A., Wang, X., Wang, J., Wei, M., Wides, R., Xiao, C., Yan, C., Yao, A., Ye, J., Zhan, M., Zhang, W., Zhang, H., Zhao, Q., Zheng, L., Zhong, F., Zhong, W., Zhu, S., Zhao, S., Gilbert, D., Baumhueter, S., Spier, G., Carter, C., Cravchik, A., Woodage, T., Ali, F., An, H., Awe, A., Baldwin, D., Baden, H., Barnstead, M., Barrow, I., Beeson, K., Busam, D., Carver, A., Center, A., Cheng, M.L., Curry, L., Danaher, S., Davenport, L., Desilets, R., Dietz, S., Dodson, K., Doup, L., Ferriera, S., Garg, N., Gluecksmann, A., Hart, B., Haynes, J., Haynes, C., Heiner, C., Hladun, S., Hostin, D., Houck, J., Howland, T., Ibegwam, C., Johnson, J., Kalush, F., Kline, L., Koduru, S., Love, A., Mann, F., May, D., McCawley, S., McIntosh, T., McMullen, I., Moy, M., Moy, L., Murphy, B., Nelson, K., Pfannkoch, C., Pratts, E., Puri, V., Qureshi, H., Reardon, M., Rodriguez, R., Rogers, Y.H., Romblad, D., Ruhfel, B., Scott, R., Sitter, C., Smallwood, M., Stewart, E., Strong, R., Suh, E., Thomas, R., Tint, N.N., Tse, S., Vech, C., Wang, G., Wetter, J., Williams, S., Williams, M., Windsor, S., Winn-Deen, E., Wolfe, K., Zaveri, J., Zaveri, K., Abril, J.F., Guigo, R., Campbell, M.J., Sjolander, K.V., Karlak, B., Kejariwal, A., Mi, H., Lazareva, B., Hatton, T., Narechania, A., Diemer, K., Muruganujan, A., Guo, N., Sato, S., Bafna, V., Istrail, S., Lippert, R., Schwartz, R., Walenz, B., Yooseph, S., Allen, D., Basu, A., Baxendale, J., Blick, L., Caminha, M., Carnes-Stine, J., Caulk, P., Chiang, Y.H., Coyne, M., Dahlke, C., Mays, A., Dombroski, M., Donnelly, M., Ely, D., Esparham, S., Fosler, C., Gire, H., Glanowski, S., Glasser, K., Glodek, A., Gorokhov, M., Graham, K., Gropman, B., Harris, M., Heil, J., Henderson, S., Hoover, J., Jennings, D., Jordan, C., Jordan, J., Kasha, J., Kagan, L., Kraft, C., Levitsky, A., Lewis, M., Liu, X., Lopez, J., Ma, D., Majoros, W., McDaniel, J., Murphy, S., Newman, M., Nguyen, T., Nguyen, N., Nodell, M., Pan, S., Peck, J., Peterson, M., Rowe, W., Sanders, R., Scott, J., Simpson, M., Smith, T., Sprague, A., Stockwell, T., Turner, R., Venter, E., Wang, M., Wen, M., Wu, D., Wu, M., Xia, A., Zandieh, A., and Zhu, X. (2001). The sequence of the human genome. Science 291, 1304–1351.PubMedCrossRefGoogle Scholar
  172. von Mutius, E., Martinez, F.D., Fritzsch, C., Nicolai, T., Reitmeir, P., and Thiemann, H.H. (1994). Skin test reactivity and number of siblings. BMJ 308, 692–695.CrossRefGoogle Scholar
  173. von Mutius, E., and Vercelli, D. (2010). Farm living: effects on childhood asthma and allergy. Nat Rev Immunol 10, 861–868.CrossRefGoogle Scholar
  174. Vonmutius, E., Fritzsch, C., Weiland, S.K., Roll, G., and Magnussen, H. (1992). Prevalence of asthma and allergic disorders among children in United Germany: a descriptive comparison. Br Med J 305, 1395–1399.CrossRefGoogle Scholar
  175. Wang, T., Hu, X., Liang, S., Li, W., Wu, X., Wang, L., and Jin, F. (2015). Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Benef Microbes 6, 707–717.PubMedCrossRefGoogle Scholar
  176. Welling, M.M., Nabuurs, R.J., and van der Weerd, L. (2015). Potential role of antimicrobial peptides in the early onset of Alzheimer's disease. Alzheimer’s Dementia 11, 51–57.PubMedCrossRefGoogle Scholar
  177. Widera, M., Klein, A.N., Cinar, Y., Funke, S.A., Willbold, D., and Schaal, H. (2014). The D-amino acid peptide D3 reduces amyloid fibril boosted HIV-1 infectivity. AIDS Res Ther 11, 1.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Willett, W.C., Sacks, F., Trichopoulou, A., Drescher, G., Ferroluzzi, A., Helsing, E., and Trichopoulos, D. (1995). Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr 61, 1402s–1406s.PubMedGoogle Scholar
  179. Witte, A.V., Fobker, M., Gellner, R., Knecht, S., and Floel, A. (2009). Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci USA 106, 1255–1260.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Wozniak, M.A., Frost, A.L., and Itzhaki, R.F. (2009a). Alzheimer’s disease-specific Tau phosphorylation is induced by herpes simplex virus type 1. J Alzheimers Dis 16, 341–350.PubMedGoogle Scholar
  181. Wozniak, M.A., Mee, A.P., and Itzhaki, R.F. (2009b). Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. J Pathol 217, 131–138.PubMedCrossRefGoogle Scholar
  182. Wu, G.D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.Y., Keilbaugh, S.A., Bewtra, M., Knights, D., Walters, W.A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H.Z., Bushman, F.D., and Lewis, J.D. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Yamada, T., Kadekaru, H., Matsumoto, S., Inada, H., Tanabe, M., Moriguchi, E.H., Moriguchi, Y., Ishikawa, P., Ishikawa, A.G., Taira, K., and Yamori, Y. (2002). Prevalence of dementia in the older Japanese-Brazilian population. Psychiatry Clin Neurosci 56, 71–75.PubMedCrossRefGoogle Scholar
  184. Yang, T., Santisteban, M.M., Rodriguez, V., Li, E., Ahmari, N., Carvajal, J.M., Zadeh, M., Gong, M., Qi, Y., Zubcevic, J., Sahay, B., Pepine, C.J., Raizada, M.K., and Mohamadzadeh, M. (2015). Gut dysbiosis is linked to hypertension. Hypertension 65, 1331–1340.PubMedPubMedCentralCrossRefGoogle Scholar
  185. Yano, J.M., Yu, K., Donaldson, G.P., Shastri, G.G., Ann, P., Ma, L., Nagler, C.R., Ismagilov, R.F., Mazmanian, S.K., and Hsiao, E.Y. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276.PubMedPubMedCentralCrossRefGoogle Scholar
  186. Yehuda, S., Rabinovitz, S., and Mostofsky, D.I. (2005). Essential fatty acids and the brain: from infancy to aging. Neurobiol Aging 26, 98–102.PubMedCrossRefGoogle Scholar
  187. Yu, H.N., Zhu, J., Pan, W.S., Shen, S.R., Shan, W.G., and Das, U.N. (2014). Effects of fish oil with a high content of n-3 polyunsaturated fatty acids on mouse gut microbiota. Arch Med Res 45, 195–202.PubMedCrossRefGoogle Scholar
  188. Zandi, P.P., Anthony, J.C., Khachaturian, A.S., Stone, S.V., Gustafson, D., Tschanz, J.T., Norton, M.C., Welsh-Bohmer, K.A., Breitner, J.C.S., and Grp, C.C.S. (2004). Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: The Cache County Study. Arch Neurol 61, 82–88.PubMedCrossRefGoogle Scholar
  189. Zhang, C., Li, S., Yang, L., Huang, P., Li, W., Wang, S., Zhao, G., Zhang, M., Pang, X., Yan, Z., Liu, Y., and Zhao, L. (2013). Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun 4, 2163.PubMedPubMedCentralGoogle Scholar
  190. Zhang, R., Miller, R.G., Gascon, R., Champion, S., Katz, J., Lancero, M., Narvaez, A., Honrada, R., Ruvalcaba, D., and McGrath, M.S. (2009). Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 206, 121–124.PubMedCrossRefGoogle Scholar
  191. Ziegler-Graham, K., Brookmeyer, R., Johnson, E., and Arrighi, H.M. (2008). Worldwide variation in the doubling time of Alzheimer’s disease incidence rates. Alzheimers Dementia 4, 316–323.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Key Laboratory of Mental Health, Institute of PsychologyChinese Academy of SciencesBeijingChina

Personalised recommendations