Advertisement

Science China Life Sciences

, Volume 59, Issue 7, pp 647–655 | Cite as

One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients

  • Zhifeng Xiao
  • Fengwu Tang
  • Jiaguang Tang
  • Huilin Yang
  • Yannan Zhao
  • Bing Chen
  • Sufang Han
  • Nuo Wang
  • Xing Li
  • Shixiang Cheng
  • Guang Han
  • Changyu Zhao
  • Xiaoxiong Yang
  • Yumei Chen
  • Qin Shi
  • Shuxun HouEmail author
  • Sai ZhangEmail author
  • Jianwu DaiEmail author
Open Access
Cover Article

Abstract

The objective of this clinical study was to assess the safety and feasibility of the collagen scaffold, NeuroRegen scaffold, one year after scar tissue resection and implantation. Scar tissue is a physical and chemical barrier that prevents neural regeneration. However, identification of scar tissue is still a major challenge. In this study, the nerve electrophysiology method was used to distinguish scar tissue from normal neural tissue, and then different lengths of scars ranging from 0.5–4.5 cm were surgically resected in five complete chronic spinal cord injury (SCI) patients. The NeuroRegen scaffold along with autologous bone marrow mononuclear cells (BMMCs), which have been proven to promote neural regeneration and SCI recovery in animal models, were transplanted into the gap in the spinal cord following scar tissue resection. No obvious adverse effects related to scar resection or NeuroRegen scaffold transplantation were observed immediately after surgery or at the 12-month follow-up. In addition, patients showed partially autonomic nervous function improvement, and the recovery of somatosensory evoked potentials (SSEP) from the lower limbs was also detected. The results indicate that scar resection and NeuroRegen scaffold transplantation could be a promising clinical approach to treating SCI.

Keywords

NeuroRegen scaffold chronic spinal cord injury scar resection collagen scaffold transplantation bone marrow mononuclear cells tissue regeneration 

References

  1. Bahr, M., Przyrembel, C., and Bastmeyer, M. (1995). Astrocytes from adult rat optic nerves are nonpermissive for regenerating retinal ganglion cell axons. Exp Neurol 131, 211–220.CrossRefPubMedGoogle Scholar
  2. Barritt, A.W., Davies, M., Marchand, F., Hartley, R., Grist, J., Yip, P., McMahon, S.B., and Bradbury, E.J. (2006). Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci 26, 10856–10867.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bradbury, E.J., and Carter, L.M. (2011). Manipulating the glial scar: Chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull 84, 306–316.CrossRefPubMedGoogle Scholar
  4. Bradbury, E.J., Moon, L.D., Popat, R.J., King, V.R., Bennett, G.S., Patel, P.N., Fawcett, J.W., and McMahon, S.B. (2002). Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640.CrossRefPubMedGoogle Scholar
  5. Chen, Y., Tang, Y., Vogel, L.C., and Devivo, M.J. (2013). Causes of spinal cord injury. Top Spinal Cord Inj Rehabil 19, 1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cregg, J.M., DePaul, M.A., Filous, A.R., Lang, B.T., Tran, A., and Silver, J. (2014). Functional regeneration beyond the glial scar. Exp Neurol 253, 197–207.CrossRefPubMedGoogle Scholar
  7. Deda, H., Inci, M.C., Kurekci, A.E., Kayihan, K., Ozgun, E., Ustunsoy, G.E., and Kocabay, S. (2008). Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy 10, 565–574.CrossRefPubMedGoogle Scholar
  8. Ditor, D.S., John, S., Cakiroglu, J., Kittmer, C., Foster, P.J., and Weaver, L.C. (2008). Magnetic resonance imaging versus histological assessment for estimation of lesion volume after experimental spinal cord injury. Laboratory investigation. J Neurosurg Spine 9, 301–306.CrossRefPubMedGoogle Scholar
  9. Fan, J., Xiao, Z.F., Zhang, H.T., Chen, B., Tang, G.Q., Hou, X.L., Ding, W.Y., Wang, B., Zhang, P., Dai, J.W., and Xu, R.X. (2010). Linear ordered collagen scaffolds loaded with collagen-binding neurotrophin-3 promote axonal regeneration and partial functional recovery after complete spinal cord transection. J Neurotrauma 27, 1671–1683.CrossRefPubMedGoogle Scholar
  10. Fawcett, J.W., and Asher, R.A. (1999). The glial scar and central nervous system repair. Brain Res Bull 49, 377–391.CrossRefPubMedGoogle Scholar
  11. Garcia-Altes, A., Perez, K., Novoa, A., Suelves, J.M., Bernabeu, M., Vidal, J., Arrufat, V., Santamarina-Rubio, E., Ferrando, J., Cogollos, M., Cantera, C.M., and Luque, J.C. (2012). Spinal cord injury and traumatic brain injury: a cost-of-illness study. Neuroepidemiology 39, 103–108.CrossRefPubMedGoogle Scholar
  12. Geffner, L.F., Santacruz, P., Izurieta, M., Flor, L., Maldonado, B., Auad, A.H., Montenegro, X., Gonzalez, R., and Silva, F. (2008). Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant 17, 1277–1293.CrossRefPubMedGoogle Scholar
  13. Goldshmit, Y., Galea, M.P., Wise, G., Bartlett, P.F., and Turnley, A.M. (2004). Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J Neurosci 24, 10064–10073.CrossRefPubMedGoogle Scholar
  14. Haggerty, A.E., and Oudega, M. (2013). Biomaterials for spinal cord repair. Neurosci Bull 29, 445–459.CrossRefPubMedGoogle Scholar
  15. Han, Q.Q., Sun, W.J., Lin, H., Zhao, W.X., Gao, Y., Zhao, Y.N., Chen, B., Xiao, Z.F., Hu, W., Li, Y., Yang, B., and Dai, J.W. (2009). Linear ordered collagen scaffolds loaded with collagen-binding brain-derived neurotrophic factor improve the recovery of spinal cord injury in rats. Tissue Eng Part A 15, 2927–2935.CrossRefPubMedGoogle Scholar
  16. Han, Q.Q., Jin, W., Xiao, Z.F., Ni, H.B., Wang, J.H., Kong, J., Wu, J., Liang, W.B., Chen, L., Zhao, Y.N., Chen, B., and Dai, J.W. (2010). The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody. Biomaterials 31, 9212–9220.CrossRefPubMedGoogle Scholar
  17. Han, S.F., Wang, B., Jin, W., Xiao, Z.F., Li, X., Ding, W.Y., Kapur, M., Chen, B., Yuan, B.Y., Zhu, T.S., Wang, H.D., Wang, J., Dong, Q., Liang, W.B., and Dai, J.W. (2015). The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine. Biomaterials 41, 89–96.CrossRefPubMedGoogle Scholar
  18. Hermanns, S., Klapka, N., and Muller, H.W. (2001). The collagenous lesion scar—an obstacle for axonal regeneration in brain and spinal cord injury. Restor Neurol Neurosci 19, 139–148.PubMedGoogle Scholar
  19. Jarocha, D., Milczarek, O., Kawecki, Z., Wendrychowicz, A., Kwiatkowski, S., and Majka, M. (2014). Preliminary study of autologous bone marrow nucleated cells transplantation in children with spinal cord injury. Stem Cells Transl Med 3, 395–404.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Karamouzian, S., Nematollahi-Mahani, S.N., Nakhaee, N., and Eskandary, H. (2012). Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg 114, 935–939.CrossRefPubMedGoogle Scholar
  21. Levi, A.D., Guenard, V., Aebischer, P., and Bunge, R.P. (1994). The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve. J Neurosci 14, 1309–1319.PubMedGoogle Scholar
  22. Li, X., Han, J., Zhao, Y.N., Ding, W.Y., Wei, J.S., Han, S.F., Shang, X.P., Wang, B., Chen, B., Xiao, Z.F., and Dai, J.W. (2015). Functionalized Collagen Scaffold Neutralizing the Myelin-Inhibitory Molecules Promoted Neurites Outgrowth in Vitro and Facilitated Spinal Cord Regeneration in Vivo. Acs Appl Mater Inter 7, 13960–13971.CrossRefGoogle Scholar
  23. Li, X.R., Xiao, Z.F., Han, J., Chen, L., Xiao, H.S., Ma, F.K., Hou, X.L., Li, X., Sun, J., Ding, W.Y., Zhao, Y.N., Chen, B., and Dai, J.W. (2013). Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair. Biomaterials 34, 5107–5116.CrossRefPubMedGoogle Scholar
  24. Lin, H., Chen, B., Wang, B., Zhao, Y.N., Sun, W.J., and Dai, J.W. (2006). Novel nerve guidance material prepared from bovine aponeurosis. J Biomed Mater Res A 79, 591–598.CrossRefPubMedGoogle Scholar
  25. Lukovic, D., Stojkovic, M., Moreno-Manzano, V., Jendelova, P., Sykova, E., Bhattacharya, S.S., and Erceg, S. (2015). Concise Review: Reactive Astrocytes and Stem Cells in Spinal Cord Injury: Good Guys or Bad Guys? Stem Cells 33, 1036–1041.CrossRefPubMedGoogle Scholar
  26. Majka, M., Janowska-Wieczorek, A., Ratajczak, J., Ehrenman, K., Pietrzkowski, Z., Kowalska, M.A., Gewirtz, A.M., Emerson, S.G., and Ratajczak, M.Z. (2001). Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 97, 3075–3085.CrossRefPubMedGoogle Scholar
  27. McKeon, R.J., Hoke, A., and Silver, J. (1995). Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol 136, 32–43.CrossRefPubMedGoogle Scholar
  28. Onifer, S.M., Smith, G.M., and Fouad, K. (2011). Plasticity After Spinal Cord Injury: Relevance to Recovery and Approaches to Facilitate It. Neurotherapeutics 8, 283–293.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Park, H.C., Shim, Y.S., Ha, Y., Yoon, S.H., Park, S.R., Choi, B.H., and Park, H.S. (2005). Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 11, 913–922.CrossRefPubMedGoogle Scholar
  30. Perez, M. (2015). Plasticity in the Corticospinal System after Spinal Cord Injury. J Neurotraum 32, A130–A131.Google Scholar
  31. Rasouli, A., Bhatia, N., Dinh, P., Cahill, K., Suryadevara, S., and Gupta, R. (2009). Resection of glial scar following spinal cord injury. J Orthop Res 27, 931–936.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Schmidt, C.E., and Leach, J.B. (2003). Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5, 293–347.CrossRefPubMedGoogle Scholar
  33. Selvarajah, S., Hammond, E.R., Haider, A.H., Abularrage, C.J., Becker, D., Dhiman, N., Hyder, O., Gupta, D., Black, J.H., 3rd, and Schneider, E.B. (2014). The burden of acute traumatic spinal cord injury among adults in the united states: an update. J Neurotrauma 31, 228–238.CrossRefPubMedGoogle Scholar
  34. Shearer, M.C., Niclou, S.P., Brown, D., Asher, R.A., Holtmaat, A.J., Levine, J.M., Verhaagen, J., and Fawcett, J.W. (2003). The astrocyte/meningeal cell interface is a barrier to neurite outgrowth which can be overcome by manipulation of inhibitory molecules or axonal signalling pathways. Mol Cell Neurosci 24, 913–925.CrossRefPubMedGoogle Scholar
  35. Silver, J., and Miller, J.H. (2004). Regeneration beyond the glial scar. Nat Rev Neurosci 5, 146–156.CrossRefPubMedGoogle Scholar
  36. Sindou, M. (2001). Regrowth of the rostral spinal axons into the caudal ventral roots through a collagen tube implanted into hemisected adult rat spinal cord-Comment. Neurosurgery 49, 150–151.Google Scholar
  37. Stang, F., Fansa, H., Wolf, G., and Keilhoff, G. (2005). Collagen nerve conduits-assessment of biocompatibility and axonal regeneration. Bio-Med Mater Eng 15, 3–12.Google Scholar
  38. Sykova, E., Homola, A., Mazanec, R., Lachmann, H., Konradova, S.L., Kobylka, P., Padr, R., Neuwirth, J., Komrska, V., Vavra, V., Stulik, J., and Bojar, M. (2006). Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 15, 675–687.CrossRefPubMedGoogle Scholar
  39. Tabakow, P., Raisman, G., Fortuna, W., Czyz, M., Huber, J., Li, D.Q., Szewczyk, P., Okurowski, S., Miedzybrodzki, R., Czapiga, B., Salomon, B., Halon, A., Li, Y., Lipiec, J., Kulczyk, A., and Jarmundowicz, W. (2014). Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant 23, 1631–1655.CrossRefPubMedGoogle Scholar
  40. Tansey, K.E. (2010). Neural plasticity and locomotor recovery after spinal cord injury. Pm&R 2, S220–S226.CrossRefGoogle Scholar
  41. Tester, N.J., Plaas, A.H., and Howland, D.R. (2007). Effect of body temperature on chondroitinase ABC’s ability to cleave chondroitin sulfate glycosaminoglycans. J Neurosci Res 85, 1110–1118.CrossRefPubMedGoogle Scholar
  42. Tuszynski, M.H., and Steward, O. (2012). Concepts and methods for the study of axonal regeneration in the CNS. Neuron 74, 777–791.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Vedantam, A., Jirjis, M.B., Schmit, B.D., Wang, M.C., Ulmer, J.L., and Kurpad, S.N. (2014). Diffusion tensor imaging of the spinal cord: insights from animal and human studies. Neurosurgery 74, 1–8.CrossRefPubMedGoogle Scholar
  44. Wilson, J.R., Forgione, N., and Fehlings, M.G. (2013). Emerging therapies for acute traumatic spinal cord injury. CMAJ 185, 485–492.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Xiao, Z.F., Chen, B., and Dai, J.W. (2016). Building the regenerative microenvironment with functional biomaterials for spinal cord injury repair. J Spine doi: 10.4172/2165-7939.S7-005.Google Scholar
  46. Yiu, G., and He, Z. (2006). Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7, 617–627.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yoon, S.H., Shim, Y.S., Park, Y.H., Chung, J.K., Nam, J.H., Kim, M.O., Park, H.C., Park, S.R., Min, B.H., Kim, E.Y., Choi, B.H., Park, H., and Ha, Y. (2007). Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells 25, 2066–2073.CrossRefPubMedGoogle Scholar
  48. Yoshii, S., Oka, M., Shima, M., Taniguchi, A., Taki, Y., and Akagi, M. (2004). Restoration of function after spinal cord transection using a collagen bridge. J Biomed Mater Res A 70A, 569–575.CrossRefGoogle Scholar
  49. Zhao, R.R., and Fawcett, J.W. (2013). Combination treatment with chondroitinase ABC in spinal cord injury-breaking the barrier. Neurosci Bull 29, 477–483CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Zhifeng Xiao
    • 1
  • Fengwu Tang
    • 2
  • Jiaguang Tang
    • 3
  • Huilin Yang
    • 4
  • Yannan Zhao
    • 1
  • Bing Chen
    • 1
  • Sufang Han
    • 1
  • Nuo Wang
    • 1
  • Xing Li
    • 1
  • Shixiang Cheng
    • 2
  • Guang Han
    • 2
  • Changyu Zhao
    • 2
  • Xiaoxiong Yang
    • 3
  • Yumei Chen
    • 5
  • Qin Shi
    • 4
  • Shuxun Hou
    • 3
    Email author
  • Sai Zhang
    • 2
    Email author
  • Jianwu Dai
    • 1
    Email author
  1. 1.State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
  2. 2.Neurology and Neurosurgery HospitalAffiliated Hospital of Logistics University of Chinese People’s Armed Police Forces (CAPF)TianjinChina
  3. 3.Department of OrthopaedicsFirst Affiliated Hospital of People’s Liberation Army (PLA) General HospitalBeijingChina
  4. 4.Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySuzhouChina
  5. 5.Department of Nerve ElectrophysiologyFirst Affiliated Hospital of People’s Liberation Army (PLA) General HospitalBeijingChina

Personalised recommendations