Advertisement

Science China Life Sciences

, Volume 59, Issue 7, pp 686–693 | Cite as

Screening and identification of human ZnT8-specific single-chain variable fragment (scFv) from type 1 diabetes phage display library

  • Qian Wu
  • Xiaodong Wang
  • Yong Gu
  • Xiao Zhang
  • Yao Qin
  • Heng Chen
  • Xinyu Xu
  • Tao Yang
  • Mei ZhangEmail author
Open Access
Research Paper

Abstract

Zinc transporter 8 (ZnT8) is a major autoantigen and a predictive marker in type 1 diabetes (T1D). To investigate ZnT8-specific antibodies, a phage display library from T1D was constructed and single-chain antibodies against ZnT8 were screened and identified. Human T1D single-chain variable fragment (scFv) phage display library consists of approximately 1×108 clones. After four rounds of bio-panning, seven unique clones were positive by phage ELISA. Among them, C27 and C22, which demonstrated the highest affinity to ZnT8, were expressed in Escherichia coli Top10F’ and then purified by affinity chromatography. C27 and C22 specifically bound ZnT8 N/C fusion protein and ZnT8 C terminal dimer with one Arg325Trp mutation. The specificity to human islet cells of these scFvs were further confirmed by immunohistochemistry. In conclusion, we have successfully constructed a T1D phage display antibody library and identified two ZnT8-specific scFv clones, C27 and C22. These ZnT8-specific scFvs are potential agents in immunodiagnostic and immunotherapy of T1D.

Keywords

Zinc transporter 8 (ZnT8) phage display single-chain variable fragment (scFv) type 1 diabetes (T1D) 

References

  1. Barbas, C.F., Burton, D.R., Scott, J.K., and Silverman, G.J. (2004). Phage display: a laboratory manual (CSHL Press).Google Scholar
  2. Brenner, M.K., and Heslop, H.E. (2010). Adoptive T cell therapy of cancer, Curr Opin Immunol 22, 251–257.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cheadle, E.J., Gornall, H., Baldan, V., Hanson, V., Hawkins, R.E., and Gilham, D.E. (2014). CAR T cells: driving the road from the laboratory to the clinic, Immunol Rev 257, 91–106.CrossRefPubMedGoogle Scholar
  4. Chimienti, F., Devergnas, S., Favier, A., and Seve, M. (2004). Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules, Diabetes 53, 2330–2337.CrossRefPubMedGoogle Scholar
  5. Chimienti, F., Devergnas, S., Pattou, F., Schuit, F., Garcia-Cuenca, R., Vandewalle, B., Kerr-Conte, J., Van Lommel, L., Grunwald, D., Favier, A., and Seve, M. (2006). In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion, J Cell Sci 119, 4199–4206.CrossRefPubMedGoogle Scholar
  6. Dang, M., Rockell, J., Wagner, R., Wenzlau, J.M., Yu, L., Hutton, J.C., Gottlieb, P.A., and Davidson, H.W. (2011). Human type 1 diabetes is associated with T cell autoimmunity to zinc transporter 8, J Immunol 186, 6056–6063.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ehrenmann, F., Kaas, Q., and Lefranc, M.P. (2010). IMGT/3Dstructure-DB and IMGT/DomainGapAlign: a database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MhcSF, Nucleic Acids Res 38, D301–307.CrossRefPubMedGoogle Scholar
  8. Elinav, E., Adam, N., Waks, T., and Eshhar, Z. (2009). Amelioration of colitis by genetically engineered murine regulatory T cells redirected by antigen-specific chimeric receptor, Gastroenterology 136, 1721–1731.CrossRefPubMedGoogle Scholar
  9. Fransson, M., Piras, E., Burman, J., Nilsson, B., Essand, M., Lu, B., Harris, R.A., Magnusson, P.U., Brittebo, E., and Loskog, A.S. (2012). CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery, J Neuroinflammation 9, 112.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gu, Y., Zhang, M., Chen, H., Wang, Z., Xing, C., Yang, H., Xu, X., Liu, Y., Zhou, Z., Yu, L., Hutton, J., Eisenbarth, G., and Yang, T. (2011). Discordant association of islet autoantibodies with high-risk HLA genes in Chinese type 1 diabetes, Diabetes Metab Res Rev 27, 899–905.CrossRefPubMedGoogle Scholar
  11. Hasholzner, U., Stieber, P., Meier, W., and Lamerz, R. (1997). Value of HAMA—determination in clinical practice—an overview, Anticancer Res 17, 3055–3058.PubMedGoogle Scholar
  12. Kawasaki, E. (2012). ZnT8 and type 1 diabetes, Endocr J 59, 531–537.CrossRefPubMedGoogle Scholar
  13. Kawasaki, E., Tanaka, M., Miwa, M., Abiru, N., and Kawakami, A. (2014). Novel enzyme-linked immunosorbent assay for bivalent ZnT8 autoantibodies, Acta Diabetol 51, 429–434.CrossRefPubMedGoogle Scholar
  14. Kawasaki, E., Uga, M., Nakamura, K., Kuriya, G., Satoh, T., Fujishima, K., Ozaki, M., Abiru, N., Yamasaki, H., Wenzlau, J.M., Davidson, H.W., Hutton, J.C., and Eguchi, K. (2008). Association between anti-ZnT8 autoantibody specificities and SLC30A8 Arg325Trp variant in Japanese patients with type 1 diabetes, Diabetologia 51, 2299–2302.CrossRefPubMedGoogle Scholar
  15. Kohler, G., and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256, 495–497.CrossRefPubMedGoogle Scholar
  16. Lefranc, M.P., Giudicelli, V., Duroux, P., Jabado-Michaloud, J., Folch, G., Aouinti, S., Carillon, E., Duvergey, H., Houles, A., Paysan-Lafosse, T., Hadi-Saljoqi, S., Sasorith, S., Lefranc, G., and Kossida, S. (2015). IMGT(R), the international ImMunoGeneTics information system(R) 25 years on, Nucleic Acids Res 43, D413–422.CrossRefPubMedGoogle Scholar
  17. MacDonald, K.G., Hoeppli, R.E., Huang, Q., Gillies, J., Luciani, D.S., Orban, P.C., Broady, R., and Levings, M.K. (2016). Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor, J Clin Invest 126, 1413–1424.CrossRefPubMedPubMedCentralGoogle Scholar
  18. McCafferty, J., Griffiths, A.D., Winter, G., and Chiswell, D.J. (1990). Phage antibodies: filamentous phage displaying antibody variable domains, Nature 348, 552–554.CrossRefPubMedGoogle Scholar
  19. Overbeck, S., Uciechowski, P., Ackland, M.L., Ford, D., and Rink, L. (2008). Intracellular zinc homeostasis in leukocyte subsets is regulated by different expression of zinc exporters ZnT-1 to ZnT-9, J Leukoc Biol 83, 368–380.CrossRefPubMedGoogle Scholar
  20. Richter, M., and Daquillard, F. (1980). Marked enhancement of antibody synthesis following immunization with antigen bound to host lymphocytes, A potential treatment of patients with allergy. Ann Allergy 44, 152–157.PubMedGoogle Scholar
  21. Seve, M., Chimienti, F., Devergnas, S., and Favier, A. (2004). In silico identification and expression of SLC30 family genes: an expressed sequence tag data mining strategy for the characterization of zinc transporters' tissue expression, BMC Genomics 5, 32.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Skarstrand, H., Krupinska, E., Haataja, T.J., Vaziri-Sani, F., Lagerstedt, J.O., and Lernmark, A. (2015). Zinc transporter 8 (ZnT8) autoantibody epitope specificity and affinity examined with recombinant ZnT8 variant proteins in specific ZnT8R and ZnT8W autoantibody-positive type 1 diabetes patients, Clin Exp Immunol 179, 220–229.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Skarstrand, H., Lernmark, A., and Vaziri-Sani, F. (2013). Antigenicity and epitope specificity of ZnT8 autoantibodies in type 1 diabetes, Scand J Immunol 77, 21–29.CrossRefPubMedGoogle Scholar
  24. Ustinova, J., Belitskin, D., Juronen, E., Zusinaite, E., Utt, M., and Uibo, R. (2013). Characterization of monoclonal ZnT8-specific antibody. Front Immunol 02.Google Scholar
  25. Weijers, R.N. (2010). Three-dimensional structure of beta-cell-specific zinc transporter, ZnT-8, predicted from the type 2 diabetes-associated gene variant SLC30A8 R325W, Diabetol Metab Syndr 2, 33.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Wenzlau, J.M., Frisch, L.M., Gardner, T.J., Sarkar, S., Hutton, J.C., and Davidson, H.W. (2009). Novel antigens in type 1 diabetes: the importance of ZnT8, Curr Diab Rep 9, 105–112.CrossRefPubMedGoogle Scholar
  27. Wenzlau, J.M., Juhl, K., Yu, L., Moua, O., Sarkar, S.A., Gottlieb, P., Rewers, M., Eisenbarth, G.S., Jensen, J., Davidson, H.W., and Hutton, J.C. (2007). The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes, Proc Natl Acad Sci USA 104, 17040–17045.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Wenzlau, J.M., Liu, Y., Yu, L., Moua, O., Fowler, K.T., Rangasamy, S., Walters, J., Eisenbarth, G.S., Davidson, H.W., and Hutton, J.C. (2008). A common nonsynonymous single nucleotide polymorphism in the SLC30A8 gene determines ZnT8 autoantibody specificity in type 1 diabetes, Diabetes 57, 2693–2697.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Xu, X., Gu, Y., Bian, L., Shi, Y., Cai, Y., Chen, Y., Chen, H., Qian, L., Wu, X., Xu, K., Mallone, R., Davidson, H.W., Yu, L., She, J., Zhang, M., and Yang, T. (2016). Characterization of immune response to novel HLA-A2-restricted epitopes from zinc transporter 8 in type 1 diabetes, Vaccine 34, 854–862.CrossRefPubMedGoogle Scholar
  30. Zhang, X., Qi, X., Zhang, Q., Zeng, X., Shi, Z., Jin, Q., Zhan, F., Xu, Y., Liu, Z., Feng, Z., and Jiao, Y. (2013). Human 4F5 single-chain Fv antibody recognizing a conserved HA1 epitope has broad neutralizing potency against H5N1 influenza A viruses of different clades, Antiviral Res 99, 91–99CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Qian Wu
    • 1
  • Xiaodong Wang
    • 1
  • Yong Gu
    • 1
  • Xiao Zhang
    • 2
  • Yao Qin
    • 1
  • Heng Chen
    • 1
  • Xinyu Xu
    • 1
  • Tao Yang
    • 1
  • Mei Zhang
    • 1
    Email author
  1. 1.Department of EndocrinologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  2. 2.Key Laboratory of Antibody Technique, Ministry of HealthNanjing Medical UniversityNanjingChina

Personalised recommendations