Science China Life Sciences

, Volume 59, Issue 7, pp 678–685 | Cite as

Increased telocytes involved in the proliferation of vascular smooth muscle cells in rat carotid artery balloon injury

  • Yanyan Li
  • Xiuxiu Zhang
  • Juan Gao
  • Han Xiao
  • Ming Xu
Open Access
Research Paper

Abstract

Telocytes (TCs) are a novel type of interstitial cells that are thought to be involved in tissue regeneration and repair. However, the possible roles of TCs in vascular diseases remain unclear. In this study, we used a rat model of carotid artery balloon injury (CABI) to study the changes and potential roles of vascular TCs after vascular injury. Transmission electron microscopy (TEM) and CD34/vimentin immunolabeling were used to identify and quantify TCs in normal and injured carotid arteries. Quantitative immunofluorescence analysis revealed that, compared with the sham group, the number of TCs in the CABI group increased from 7.2±1.0 to an average of 20.4±1.8 per 1-mm2 vascular area. The expression level of miR-24 in TCs was three times higher than in vascular smooth muscle cells (VSMCs). The percentage of VSMCs in S phase and G2/M phase increased by approximately 5% when VSMCs were incubated with the supernatant of TCs. The antagomir of miR-24 in TCs reduced the ratio of VSMCs in S phase and G2/M phase. This study illuminates the function of TCs in the proliferation of VSMCs.

Keywords

blood vessel telocyte VSMCs proliferation vascular injury 

Supplementary material

11427_2016_5075_MOESM1_ESM.ppt (26.4 mb)
Supplementary material, approximately 26.4 MB.
11427_2016_5075_MOESM2_ESM.doc (34 kb)
Supplementary material, approximately 36.0 KB.

References

  1. Albulescu, R., Tanase, C., Codrici, E., Popescu, D.I., Cretoiu, S.M., and Popescu, L.M. (2015). The secretome of myocardial telocytes modulates the activity of cardiac stem cells, J Cell Mol Med 19, 1783–1794.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alexander, M.R., and Owens, G.K. (2012). Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease, Annu Rev Physiol 74, 13–40.CrossRefPubMedGoogle Scholar
  3. Chan, M.C., Hilyard, A.C., Wu, C., Davis, B.N., Hill, N.S., Lal, A., Lieberman, J., Lagna, G., and Hata, A. (2010). Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression, EMBO J 29, 559–573.CrossRefPubMedGoogle Scholar
  4. Cismasiu, V.B., and Popescu, L.M. (2015). Telocytes transfer extracellular vesicles loaded with microRNAs to stem cells, J Cell Mol Med 19, 351–358.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cismasiu, V.B., Radu, E., and Popescu, L.M. (2011). miR-193 expression differentiates telocytes from other stromal cells. J Cell Mol Med 15, 1071–1074.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cretoiu, S.M., and Popescu, L.M. (2014). Telocytes revisited, Biomol Concepts 5, 353–369.CrossRefPubMedGoogle Scholar
  7. Fu, S., Wang, F., Cao, Y., Huang, Q., Xiao, J., Yang, C., and Popescu, L.M. (2015). Telocytes in human liver fibrosis, J Cell Mol Med 19, 676–683.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gherghiceanu, M., Manole, C.G., and Popescu, L.M. (2010). Telocytes in endocardium: electron microscope evidence, J Cell Mol Med 14, 2330–2334.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gherghiceanu, M., and Popescu, L.M. (2010). Cardiomyocyte precursors and telocytes in epicardial stem cell niche: electron microscope images, J Cell Mol Med 14, 871–877.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Inoue, T., and Node, K. (2009). Molecular basis of restenosis and novel issues of drug-eluting stents, Circ J 73, 615–621.CrossRefPubMedGoogle Scholar
  11. Ja, K.M., Miao, Q., Zhen Tee, N.G., Lim, S.Y., Nandihalli, M., C, J.A.R., Mehta, A., and Shim, W. (2016). iPSC-derived human cardiac progenitor cells improve ventricular remodelling via angiogenesis and interstitial networking of infarcted myocardium. J Cell Mol Med 20, 323–332.CrossRefPubMedGoogle Scholar
  12. Ji, R., Cheng, Y., Yue, J., Yang, J., Liu, X., Chen, H., Dean, D.B., and Zhang, C. (2007). MicroRNA expression signature and antisense- mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation, Circ Res 100, 1579–1588.CrossRefPubMedGoogle Scholar
  13. Li, L., Lin, M., Wang, R., Zhang, C., Qi, G., Xu, M., Rong, R., and Zhu, T. (2014). Renal telocytes contribute to the repair of ischemically injured renal tubules, J Cell Mol Med 18, 1144–1156.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Liu, X., Cheng, Y., Zhang, S., Lin, Y., Yang, J., and Zhang, C. (2009). A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia, Circ Res 104, 476–487.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Majesky, M.W. (2015). Adventitia and perivascular cells, Arterioscler Thromb Vasc Biol 35, e31–35.CrossRefPubMedGoogle Scholar
  16. Manole, C.G., Cismasiu, V., Gherghiceanu, M., and Popescu, L.M. (2011). Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis, J Cell Mol Med 15, 2284–2296.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Popescu, L.M., and Faussone-Pellegrini, M.S. (2010). TELOCYTES—a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to TELOCYTES, J Cell Mol Med 14, 729–740.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Richter, M., and Kostin, S. (2015). The failing human heart is characterized by decreased numbers of telocytes as result of apoptosis and altered extracellular matrix composition, J Cell Mol Med 19, 2597–2606.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Rodriguez-Moyano, M., Diaz, I., Dionisio, N., Zhang, X., Avila-Medina, J., Calderon-Sanchez, E., Trebak, M., Rosado, J.A., Ordonez, A., and Smani, T. (2013). Urotensin-II promotes vascular smooth muscle cell proliferation through store-operated calcium entry and EGFR transactivation, Cardiovasc Res 100, 297–306.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Sano, M., Unno, N., Sasaki, T., Baba, S., Sugisawa, R., Tanaka, H., Inuzuka, K., Yamamoto, N., Sato, K., and Konno, H. (2016). Topologic distributions of vasa vasorum and lymphatic vasa vasorum in the aortic adventitia—Implications for the prevalence of aortic diseases, Atherosclerosis 247, 127–134.CrossRefPubMedGoogle Scholar
  21. Sun, S.G., Zheng, B., Han, M., Fang, X.M., Li, H.X., Miao, S.B., Su, M., Han, Y., Shi, H.J., and Wen, J.K. (2011). miR-146a and Kruppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation. EMBO Rep 12, 56–62.CrossRefPubMedGoogle Scholar
  22. Tulis, D.A. (2007). Rat carotid artery balloon injury model, Methods Mol Med 139, 1–30.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Wang, F., Song, Y., Bei, Y., Zhao, Y., Xiao, J., and Yang, C. (2014). Telocytes in liver regeneration: possible roles, J Cell Mol Med 18, 1720–1726.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Wang, G.Q., Cen, C., Li, C., Cao, S., Wang, N., Zhou, Z., Liu, X.M., Xu, Y., Tian, N.X., Zhang, Y., Wang, J., Wang, L.P., and Wang, Y. (2015). Deactivation of excitatory neurons in the prelimbic cortex via Cdk5 promotes pain sensation and anxiety, Nat Commun 6, 7660.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Wang, X., Chen, L., Liu, J., Yan, T., Wu, G., Xia, Y., Zong, G., and Li, F. (2016). In vivo treatment of rat arterial adventitia with interleukin1beta induces intimal proliferation via the JAK2/STAT3 signaling pathway, Mol Med Rep 13, 3451–3458.PubMedPubMedCentralGoogle Scholar
  26. Zhao, B., Chen, S., Liu, J., Yuan, Z., Qi, X., Qin, J., Zheng, X., Shen, X., Yu, Y., Qnin, T.J., Chan, J.Y., and Cai, D. (2013). Cardiac telocytes were decreased during myocardial infarction and their therapeutic effects for ischaemic heart in rat, J Cell Mol Med 17, 123–133.CrossRefPubMedGoogle Scholar
  27. Zhao, B., Liao, Z., Chen, S., Yuan, Z., Yilin, C., Lee, K.K., Qi, X., Shen, X., Zheng, X., Quinn, T., and Cai, D. (2014). Intramyocardial transplantation of cardiac telocytes decreases myocardial infarction and improves post-infarcted cardiac function in rats, J Cell Mol Med 18, 780–789.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Zheng, Y., Chen, X., Qian, M., Zhang, M., Zhang, D., Bai, C., Wang, Q., and Wang, X. (2014). Human lung telocytes could promote the proliferation and angiogenesis of human pulmonary microvascular endothelial cells in vitro. Mol Cell Ther doi: 10.1186/2052-8426-2-3.Google Scholar
  29. Zhou, J., Wang, Y., Zhu, P., Sun, H., Mou, Y., Duan, C., Yao, A., Lv, S., and Wang, C. (2014). Distribution and characteristics of telocytes as nurse cells in the architectural organization of engineered heart tissues, Sci China Life Sci 57, 241–247.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Yanyan Li
    • 1
  • Xiuxiu Zhang
    • 1
  • Juan Gao
    • 1
  • Han Xiao
    • 1
  • Ming Xu
    • 1
  1. 1.Department of Cardiology, Institute of Vascular MedicinePeking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health and Beijing Key Laboratory of cardiovascular Receptors ResearchBeijingChina

Personalised recommendations