Advertisement

Science China Life Sciences

, Volume 60, Issue 2, pp 152–157 | Cite as

Generation of obese rat model by transcription activator-like effector nucleases targeting the leptin receptor gene

  • Yuting Chen
  • Wenqing Lu
  • Na Gao
  • Yi Long
  • Yanjiao Shao
  • Meizhen Liu
  • Huaqing Chen
  • Shixin Ye
  • Xueyun Ma
  • Mingyao LiuEmail author
  • Dali LiEmail author
Open Access
Research Paper

Abstract

The laboratory rat is a valuable mammalian model organism for basic research and drug discovery. Here we demonstrate an efficient methodology by applying transcription activator-like effector nucleases (TALENs) technology to generate Leptin receptor (Lepr) knockout rats on the Sprague Dawley (SD) genetic background. Through direct injection of in vitro transcribed mRNA of TALEN pairs into SD rat zygotes, somatic mutations were induced in two of three resulting pups. One of the founders carrying bi-allelic mutation exhibited early onset of obesity and infertility. The other founder carried a chimeric mutation which was efficiently transmitted to the progenies. Through phenotyping of the resulting three lines of rats bearing distinct mutations in the Lepr locus, we found that the strains with a frame-shifted or premature stop codon mutation led to obesity and metabolic disorders. However, no obvious defect was observed in a strain with an in-frame 57 bp deletion in the extracellular domain of Lepr. This suggests the deleted amino acids do not significantly affect Lepr structure and function. This is the first report of generating the Lepr mutant obese rat model in SD strain through a reverse genetic approach. This suggests that TALEN is an efficient and powerful gene editing technology for the generation of disease models.

Keywords

TALENs Lepr knockout rat germ-line transmission 

Notes

Acknowledgements

This work was supported by the State Key Development Programs of China (2012CB910400 to Mingyao Liu), the National Natural Science Foundation of China (31371455, 31171318 and 81330049), and the Science and Technology Commission of Shanghai Municipality (14140900300).

References

  1. Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., and Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512.CrossRefPubMedGoogle Scholar
  2. Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J., and Voytas, D.F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39, e82.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chen, H., Charlat, O., Tartaglia, L.A., Woolf, E.A., Weng, X., Ellis, S.J., Lakey, N.D., Culpepper, J., Moore, K.J., Breitbart, R.E., Duyk, G.M., Tepper, R.I., and Morgenstern, J.P. (1996). Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84, 491–495.CrossRefPubMedGoogle Scholar
  4. Geurts, A.M., Cost, G.J., Freyvert, Y., Zeitler, B., Miller, J.C., Choi, V.M., Jenkins, S.S., Wood, A., Cui, X., Meng, X., Vincent, A., Lam, S., Michalkiewicz, M., Schilling, R., Foeckler, J., Kalloway, S., Weiler, H., Menoret, S., Anegon, I., Davis, G.D., Zhang, L., Rebar, E.J., Gregory, P.D., Urnov, F.D., Jacob, H.J., and Buelow, R. (2009). Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Hentze, M.W., and Kulozik, A.E. (1999). A perfect message: RNA surveillance and nonsense-mediated decay. Cell 96, 307–310.CrossRefPubMedGoogle Scholar
  6. Huang, P., Xiao, A., Zhou, M., Zhu, Z., Lin, S., and Zhang, B. (2011). Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29, 699–700.CrossRefPubMedGoogle Scholar
  7. Kielar, D., Clark, J.S., Ciechanowicz, A., Kurzawski, G., Sulikowski, T., and Naruszewicz, M. (1998). Leptin receptor isoforms expressed in human adipose tissue. Metabolism 47, 844–847.CrossRefPubMedGoogle Scholar
  8. Li, D., Qiu, Z., Shao, Y., Chen, Y., Guan, Y., Liu, M., Li, Y., Gao, N., Wang, L., Lu, X., Zhao, Y., and Liu, M. (2013). Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31, 681–683.CrossRefPubMedGoogle Scholar
  9. Moscou, M.J., and Bogdanove, A.J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501.CrossRefPubMedGoogle Scholar
  10. Pattanayak, V., Lin, S., Guilinger, J.P., Ma, E., Doudna, J.A., and Liu, D.R. (2013). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31, 839–843.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Phillips, M.S., Liu, Q., Hammond, H.A., Dugan, V., Hey, P.J., Caskey, C.J., and Hess, J.F. (1996). Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13, 18–19.CrossRefPubMedGoogle Scholar
  12. Qiu, Z., Liu, M., Chen, Z., Shao, Y., Pan, H., Wei, G., Yu, C., Zhang, L., Li, X., Wang, P., Fan, H., Du, B., Liu, B., and Li, D. (2013). High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Res 41, e120.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Rosmond, R., Chagnon, Y.C., Holm, G., Chagnon, M., Perusse, L., Lindell, K., Carlsson, B., Bouchard, C., and Bjorntorp, P. (2000). Hypertension in obesity and the leptin receptor gene locus. J Clin Endocrinol Metab 85, 3126–3131.PubMedGoogle Scholar
  14. Shao, Y., Guan, Y., Wang, L., Qiu, Z., Liu, M., Chen, Y., Wu, L., Li, Y., Ma, X., and Li, D. (2014). CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat Protoc 9, 2493–2512.CrossRefPubMedGoogle Scholar
  15. Tartaglia, L.A., Dembski, M., Weng, X., Deng, N., Culpepper, J., Devos, R., Richards, G.J., Campfield, L.A., Clark, F.T., Deeds, J., Muir, C., Sanker, S., Moriarty, A., Moore, K.J., Smutko, J.S., Mays, G.G., Wool, E.A., Monroe, C.A., and Tepper, R.I. (1995). Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271.CrossRefPubMedGoogle Scholar
  16. Tesson, L., Usal, C., Menoret, S., Leung, E., Niles, B.J., Remy, S., Santiago, Y., Vincent, A.I., Meng, X., Zhang, L., Gregory, P.D., Anegon, I., and Cost, G.J. (2011). Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29, 695–696.CrossRefPubMedGoogle Scholar
  17. Tong, C., Huang, G., Ashton, C., Li, P., and Ying, Q.L. (2011). Generating gene knockout rats by homologous recombination in embryonic stem cells. Nat Protoc 6, 827–844.CrossRefPubMedGoogle Scholar
  18. Tong, C., Li, P., Wu, N.L., Yan, Y., and Ying, Q.L. (2010). Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature 467, 211–213.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S., and Gregory, P.D. (2010). Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11, 636–646.CrossRefPubMedGoogle Scholar
  20. Wu-Peng, X.S., Chua, S.C., Jr., Okada, N., Liu, S.M., Nicolson, M., and Leibel, R.L. (1997). Phenotype of the obese Koletsky (f) rat due to Tyr763Stop mutation in the extracellular domain of the leptin receptor (Lepr): evidence for deficient plasma-to-CSF transport of leptin in both the Zucker and Koletsky obese rat. Diabetes 46, 513–518.CrossRefPubMedGoogle Scholar

Copyright information

© Science in China Press 2016

Authors and Affiliations

  • Yuting Chen
    • 1
  • Wenqing Lu
    • 1
  • Na Gao
    • 1
  • Yi Long
    • 1
  • Yanjiao Shao
    • 1
  • Meizhen Liu
    • 1
  • Huaqing Chen
    • 1
  • Shixin Ye
    • 2
  • Xueyun Ma
    • 1
  • Mingyao Liu
    • 1
    • 3
    Email author
  • Dali Li
    • 1
    Email author
  1. 1.Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
  2. 2.Ecole Normale Supérieure, Institut de Biologie de l’ Ecole Normale Supérieure, Institut National de la Santé et de la Recherche Médicale U1024Centre National de la Recherche ScientifiqueParisFrance
  3. 3.Institute of Biosciences and Technology, Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterHoustonUSA

Personalised recommendations